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Abstract

In this work, new multi-microphone signal processing strategies are examined

that aim to achieve noise reduction and dereverberation. Therefore, narrow-

band signal enhancement approaches are combined with broad-band pro-

cessing in terms of directivity based beamforming.

Previously introduced formulations of the multichannel Wiener filter rely on the

second-order statistics of the speech and noise signals. In this thesis, it is

examined how additional knowledge about the location of a speaker as well

as the microphone arrangement can be used in order to accomplish further

noise reduction as well as dereverberation. This is achieved by new directivity

based references for the generalized multichannel Wiener filter. For spatially

distributed microphone arrangements that exploit the diversity of the sound

field new references based on delay-and-sum beamforming are investigated.

These improve the noise reduction and dereverberation capabilities compared

with the standard speech distortion weighted multichannel Wiener filter. For

closely spaced microphones differential beamforming is used to create dir-

ectivity based references for the multichannel Wiener filter, which are able to

suppress noise from specific room directions.

Since closely spaced microphone arrangements are often used in hearing aids,

it is examined if the proposed directivity based references can be used in bin-

aural applications, where the preservation of the binaural cues is an important

aim. It is shown that the directivity based reference choices are able to pre-

serve the binaural cues of a speech source, while the signal-to-noise ratio can

be improved compared with the standard binaural multichannel Wiener filter.

Differential beamforming is very sensitive to wind noise. It is examined, how

noise reduction is possible for closely spaced microphone arrays in case wind

noise occurs. Due to the highly instationary wind noise terms, the estimation of

the noise power spectral densities is a challenging task. By exploiting the dif-

ferent signal properties of speech and wind noise, a noise reduction approach

is derived based on the decomposition of the multichannel Wiener filter which

successfully reduces wind noise.



1 Introduction

In our daily lives, speech communication devices are omnipresent and have

gained much interest in recent years. Widely available consumer products

like smartphones, laptops, tablets or the most recently introduced smart loud-

speakers are equipped with acoustic sensors that allow to perform a wide

range of tasks in terms of speech signal capturing. For example, these in-

clude conversations with far end speakers, teleconferencing applications with

multiple participants or the use of voice recognition software for speech to text

applications, voice control for navigation systems or the utilization of world wide

web services.

But also hearing-aids or hands-free communications in a car environment de-

pend on acoustic sensors. The development of cost-effective micro-electro-

mechanical system (MEMS) air pressure sensors in recent years allows to

expand the number of equipped microphones per device without increasing

the manufacturing costs significantly. A multi-microphone setup can potentially

improve the quality of a desired signal source compared with a single micro-

phone. This is achieved by forming a microphone arrangement to exploit the

spatial properties of the sound field. Source direction sensitive microphone ar-

rays can be realized by a narrow distance microphone spacing, while further

distances between the acoustic sensors allow to sample the spatial sound field

to benefit from signal diversity. Both approaches offer interesting possibilities,

while the particular configuration depends on the specific use case.

While smartphones, smart televisions or laptops are equipped with multiple

acoustic sensors, also hearing aids benefit from wireless link connections of

the microphones at both ears to achieve diversity based signal processing.

For many scenarios, the location of the desired speech source can vary over

time. Therefore, the positioning of multiple acoustic sensors on several loca-

tions allows to cover a wider area for sound capturing compared with a single

microphone.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019
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2 1 Introduction

Directional sensitive microphone arrangements are able to augment signals

from certain incident directions while attenuating signal from other locations,

which promise great capabilities in spatial noise suppression. However, all of

these sound capturing approaches require a suitable signal combining strategy,

which often additionally needs to be adaptive due to variations of the desired

sound source position.

If we consider a variety of application scenarios for microphones, several fac-

tors can disturb the desired signal. For example, in the case of teleconferen-

cing, the signal quality can be decreased due to effects caused by room acous-

tic influences. For hands-free communications in a car, the signal quality can

be degraded by background noise. Undesired wind noise signal artifacts can

occur at the microphones during conversations, which are held in windy condi-

tions. In case of people wearing hearing aids, interfering background speakers

can cause annoyance while holding talks, which leads to hearing fatigue and

concentration problems regarding the conversation content.

Under ideal circumstances, the desired speech signal is best captured in a

“get it right at the source” approach, which aims to prevent the speech signal

to be degraded in the first place. For example, this can be achieved by us-

ing high quality acoustic sensors that have a linear frequency response, good

transient preservation, provide low intrinsic noise and are able to handle sound

pressure levels within a high dynamic range. Also suitable positioning of the

microphones regarding the sound source helps to augment the desired signal

in relation to background noise. For wind noise artifacts, a mechanical mesh

of fabric can be used to dissipate turbulent air flow, while room influences can

be reduced by proper acoustic treatment. However, in many cases this is not

possible due to various reasons, which include manufacturing costs or environ-

ments which do not provide ideal properties regarding speech communication.

Also the location of the desired signal source is sometimes simply not known

in advance.

As a consequence regarding these non-idealities, signal processing algorithms

are investigated in this work, which aim to combine several acoustic sensors

in a suitable manner. The processing aims to augment the desired speech

signals, while reducing the influence of unwanted disturbances. The use of

more than one acoustic sensor allows to take the spatial sound field into ac-

count. The provided signal processing algorithms can potentially be used in a
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wide range of applications, due to the ubiquitous communication devices of all

kinds. The specific problem statement of this thesis regarding the microphone

combining is outlined in the next section.

1.1 Problem Statement

In this thesis, multichannel signal processing algorithms for microphones ar-

rangements in noisy acoustic environments are examined. To achieve noise

reduction, dereverberation and reduced speech distortion, the extension of

narrow-band signal processing algorithms by broad-band approaches in terms

of directivity-based beamforming is investigated.

One commonly used technique is the speech distortion weighted multichannel

Wiener filter (SDW-MWF) [1, 2, 3, 4, 5], which considers a trade-off between

speech distortion and noise reduction as a broad-band optimization criterion.

The reference for the speech distortion thereby is the speech component in one

microphone. The generalized multichannel Wiener filter [6] allows to expand

this algorithm with a reference that can be designed by a combination of the

individual microphone channels to form the overall transfer function. Recent

approaches [7, 6] consider the second order statistics of the input signals to

create a reference, which results in an improved output signal regarding the

signal-to-noise ratio and speech distortion compared with the SDW-MWF.

In this work, additionally to the second order statistics, knowledge about the

microphone arrangement and the location of the desired signal source is taken

into account for the reference design. This allows to create a class of directivity

based references that rely on classical beamforming approaches found in the

literature [8, 9]. Based on the microphone arrangement and the specific signal

disruptions, environmental dependent reference designs for signal improve-

ment are investigated regarding their capability to improve the signal-to-noise

ratio as well as to reduce acoustical influences.

Furthermore, the influence of these reference designs for hearing-aids, which

use multichannel noise reduction algorithms, is investigated. Therefore, the

influence of the reference designs on the preservation of the binaural cues,

which are crucial for spatial hearing, is examined.



4 1 Introduction

Besides background noise and reverberation, wind-induced disruptions are a

common problem in hearing aids as well as in other communication applica-

tions. The highly non-stationary wind noise properties make it a challenging

task to estimate the noise terms required for noise reduction. It is examined if

the signal properties of speech and wind noise between closely spaced micro-

phones can be exploited for an optimal signal combining to achieve wind noise

reduction.

1.2 Structure of the Thesis

This work is organized in the following way: In chapter 2, state-of-the-art nar-

row-band and broad-band signal combining concepts for multichannel micro-

phone setups, which are used in the following chapters, are introduced.

In chapter 3, the generalized multichannel Wiener filter is introduced. The

generalization of the speech distortion weighted Wiener filter allows to ac-

quire an overall acoustic transfer function not only by the selection of a single

microphone channel, but by combining the individual microphone channels.

It is shown that the overall acoustic transfer function has no impact on the

narrow-band signal-to-noise ratio, but impacts the broadband signal-to-noise

ratio. This generalization is important for this thesis. It allows to combine the

state-of-the-art directivity based broadband beamforming approaches, as de-

scribed in chapter 2, with the multichannel Wiener filter. This chapter has been

published in [10].

In chapter 4, the generalized multichannel Wiener filter of chapter 3 is used to

design the overall transfer function of the multichannel Wiener filter. Therefore,

directivity based references are derived that exploit the spatial sound field to

improve the broad-band signal-to-noise ratio as well as to reduce reverberation.

Dependent on the microphone arrangement, suitable reference designs are

derived. Differential beamforming references are proposed for closely spaced

microphones. For spatially distributed acoustic sensors, delay-and-sum based

references are introduced. The proposed references are applied in the context

of a monaural hearing aid, a car environment and a classroom scenario. The

results of this chapter are partly presented in [11, 10] and [12].
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In chapter 5, the differential beamforming references derived in chapter 4 are

investigated regarding their capability to preserve the binaural cues if they are

applied in the context of binaural hearing aids. The binaural cues are important

for a human being to localize signal sources in the spatial sound field. There-

fore the binaural multichannel Wiener filter is introduced together with its gen-

eralization, similar to the generalized multichannel Wiener filter in chapter 3.

The influence of the differential beamforming references on the binaural cues

of the sound field is examined.

Differential beamforming and therefore the differential beamforming references

derived in chapter 4 are sensitive to wind noise. For this reason, a wind noise

reduction approach for closely spaced microphones is derived, based on the

decomposition of the multichannel Wiener filter into a beamformer and a single

channel post filter in chapter 6. The estimation of the highly non-stationary wind

noise power spectral densities is obtained by exploiting the different correlation

properties of speech and wind noise for closely spaced microphones. The

results of this chapter are partly presented in [13] and [14].

In chapter 7, it is examined how multichannel noise reduction algorithms, as

derived in the previous chapters, can be verified using background noise sim-

ulation. Therefore, a multiple input - multiple output equalization approach

that uses more loudspeakers than microphones is derived. This equalization

approach aims to preserve the spatial properties between the microphones

if the pre-equalized signals are played back through the loudspeakers. This

chapter has been published in [15]. Finally, a conclusion of this thesis is given

in chapter 8.



2 Noise Reduction using Multichannel Signal Processing

Approaches

In the following chapter, basic noise reduction techniques for multichannel mi-

crophone setups are derived. Since in this work directivity based signal com-

bining approaches are investigated, the concepts of delay-and-sum beamform-

ing as well as differential beamforming are introduced [9, 16, 17, 18, 19]. These

broad-band signal processing techniques allow to create a directional response

in terms of an incident angle dependent sensitivity. They have in common that

they rely only on the information about the time difference of arrival regarding

the desired signal source.

Furthermore, the well-known minimum variance beamforming [20, 21, 22] as

well as the speech distortion weighted multichannel Wiener filter [1, 2, 3, 4]

are presented. Both noise reduction approaches are quite similar regarding

the beamforming, but differ by an additional post filter in the Wiener filter. By

introducing relative transfer function beamforming, it can be shown that the

multichannel Wiener filter as well as the minimum variance beamformer rely

only on the second order statistics of the signals to achieve optimal noise re-

duction.

2.1 Signal Model and Notation

In this section, the signal model and the corresponding notation is introduced.

The speech signal is often affected by acoustic influences and background

noise in a typical real world environment. Background noise can contain sev-

eral sources. For example, if a car environment is examined, noise is caused

by the engine as well as rolling noise of the tires. Furthermore, wind noise

at the microphones can be caused by open windows, fans or open convertible

hoods. Another example is a cocktail party scenario, where babble noise terms

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019
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can appear. Regarding the acoustic influences, the speech signal can be af-

fected by early reflections caused by room boundaries, which cause construct-

ive and destructive interferences. These result in coloration of the magnitude

spectrum as well as a non-minimum phase transfer function. Besides early

reflections, the accumulated late reflections which cause reverberation need to

be considered, since they degrade the speech intelligibility further.

The acoustic system is considered as a linear and time-invariant, which there-

fore can be described by an impulse response from the mouth-reference-point

(MRP) of a speaker to the dedicated microphone. This allows the microphone

signal yi(k) to be expressed as the convolution of the clean speech signal x(k)

at the MRP with an acoustic impulse response hi(k) plus an additive noise

term ni(k)

yi(k) = si(k) + ni(k) (2.1)

si(k) = x(k) ∗ hi(k) , (2.2)

where ∗ denotes the convolution, si(k) the reverberant speech signal, i is the

index of the ith microphone signal and k denotes the discrete time index. The

signal model is also depicted in Figure 2.1.

x(k) ∗ hi(k) yi(k)

ni(k)

Figure 2.1: The signal model

To combine the signals for speech processing, they are filtered by a function

gi(k) and then summed to form the output signal z(k)

z(k) =
M
∑

i=1

yi(k) ∗ gi(k) , (2.3)

where M denotes the total number of microphones. Broad-band signal pro-

cessing algorithms are commonly computed in the time domain. The filter

functions gi(k) often consist of a scalar weighting constant as well as an op-
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tional delay, which is applied to the microphone signals. The time domain signal

processing structure is depicted in Figure 2.2

+

y1(k)

y2(k)

y3(k)

yM (k)

g1(k)

g2(k)

g3(k)

gM (k)

z(k)

Figure 2.2: The system structure in the time domain with an arbitrary microphone

arrangement

To formulate the narrow-band criteria signal processing algorithms, which are

commonly described in the short time frequency domain, the microphone sig-

nals can be written as follows

Yi(η, ν) = Si(η, ν) +Ni(η, ν) (2.4)

Si(η, ν) = X(η, ν)Hi(ν) . (2.5)

Yi(η, ν), X(η, ν), and Ni(η, ν) correspond to the short time spectra of the time

domain signals. Hi(ν) represents the acoutic transfer function (ATF) corres-

ponding to the acoustic impulse response and Si(η, ν) is the speech compo-

nent at the ith microphone. η denotes the subsampled time index and ν the

frequency bin index for a block length of L samples respectively. In the follow-

ing these indices are often omitted for brevity. The short time spectra and the

ATFs can be written as M -dimensional vectors:

S = [S1, S2, . . . , SM ]T (2.6)

N = [N1, N1, . . . , NM ]T (2.7)

H = [H1, H2, . . . , HM ]T (2.8)

Y = [Y1, Y2, . . . , YM ]T (2.9)

Y = S +N (2.10)
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T denotes the transpose of a vector, ∗ the complex conjugate and † the conjug-

ate transpose. Vectors and matrices are written in bold and scalars are normal

letters.

The speech and noise signals are assumed to be zero-mean random pro-

cesses with the power spectral densities (PSDs) Φ2
Si

and Φ2
Ni

. Assuming a

single speech source, the speech correlation matrix RS has rank one and can

be expressed as

RS = E

{

SS
†
}

= Φ2
XHH

† , (2.11)

where E {} denotes the mathematical expectation and Φ2
X the PSD of the

clean speech signal at the MRP. Similarly, RN = E

{

NN
†
}

denotes the noise

correlation matrix. It is further assumed that the speech and noise terms are

orthogonal, so the input signal correlation matrix RY can be written as

RY = RS +RN . (2.12)

If we apply a signal processing algorithm to enhance the desired speech signal,

this is obtained by filtering the microphone signals with a suitable filter function

G. Therefore, the output signal Z of an algorithm with the filter coefficients

G = [G1, G2, . . . , GM ]T (2.13)

is obtained by filtering and summing the microphone signals, i.e.,

Z = G
†
Y = G

†
S +G

†
N

= ZS + ZN (2.14)

where ZS and ZN denote the speech and the noise components at the out-

put. The whole structure, from the mouth reference point of the speaker to the

output of the signal processing algorithm, is depicted in Figure 2.3

2.2 Constant Directivity Beamforming

In the following section, microphone signal combining approaches, which are

able to form a directional response, are introduced. Therefore an anechoic far
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Figure 2.3: Complete system structure in the frequency domain

field environment is considered for the derivations. Two concepts that take the

direction of arrival for the speech signal into account are presented, namely

delay-and-sum beamforming as well as differential beamforming [9, 16, 17, 18,

19]. The former relies on the coherent combining of the desired signal, while

the latter is able to create one or more spatial nulls for certain incidence angles.

Under the assumption of a diffuse noise field, the concept of superdirective

beamforming [23, 24] is presented, which aims to form a directional response

to minimize the noise energy picked up by the sidelobes of the beam. Since the

mentioned approaches are often associated with certain types of microphone

array arrangements, two commonly used configurations, namely the broadside

array and the endfire array, are presented in the following.

2.2.1 Microphone Arrangements

Microphones can be arranged in many ways to benefit from directivity based

or spatial diversity combining [25]. For two-dimensional arrays, the acoustic

sensors can be placed to form circular as well as linear arrays with equal or un-

equal spacing of the sensors. Also spherical array arrangements are possible,

however, for constant directivity beamforming the scope is on planar linear ar-

rays with equal spacing of the acoustic sensors in this thesis.
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For planar arrays, only an azimuth angle θ is considered to describe the incid-

ent direction of a source signal. The angle dependent transfer characteristic

Pi(ν, θ) from a signal source to a single microphone can be described by

Pi(ν, θ) = pi(ν, θ)e
−jφi(ν,θ) , (2.15)

where pi(ν, θ) and φi(ν, θ) denote the angle dependent magnitude and phase

respectively.

Broadside Array

The broadside array consists of several microphones, which are arranged in

line. The direction of arrival of the desired speech source ideally is perpen-

dicular to the axis of the broadside array. The corresponding microphone ar-

rangement is depicted in Figure 2.4.

+

Y1

Y2

YM

G∗
1

G∗
2

G∗
M

Z

Figure 2.4: The broadside array

Endfire Array

Also the endfire array is an arrangement with the microphones positioned in

line. However, the direction of arrival for the desired speech source is on axis

with the microphones. Figure 2.5 depicts this configuration.



2.2 Constant Directivity Beamforming 13

+

Y1

Y2

YM

G∗
1

G∗
2

G∗
M

Z

Figure 2.5: The endfire array

2.2.2 Delay-and-Sum Beamforming

Delay-and-sum beamforming is a combining approach that relies on coher-

ent summing of the direct path of the desired speech source signal. This is

achieved by delaying and weighting the microphone signals in a suitable man-

ner before they are added. To implement this as a filter function, a steering

vector is used to achieve a certain look direction of the beamformer, which de-

pends on the incident angle θ of the source signal. The steering vector can be

written as

G
DS =

1

M
[1, ej2πντ2 , ej2πντ3 , . . . , ej2πντM ]T , (2.16)

where τi denotes the delay corresponding to the ith microphone. It can be

calculated as

τi = (i− 1)
cos(θ)δ

c
, (2.17)

where δ is the distance between two of the microphones in an equally spaced

linear array and c is the speed of sound. Figure 2.6 depicts the setup for an

angle dependent steering vector. Delay-and-sum beamforming can be used

for broadside as well as for endfire microphone array configurations. Due to

the coherent summing of the direct signal, incoherent reflections and noise

terms are reduced in echoic environments, which makes the delay-and-sum

approach suitable for dereverberation as well as noise reduction.
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Y1

Y2

YM

θ

θ

θ

δ

Figure 2.6: The microphone array - steering vector

2.2.3 Differential Beamforming

In contrast to delay-and-sum beamforming, which focuses on the look direc-

tion for a desired signal, differential beamforming allows to steer one or more

nulls to suppress signals from a certain incident angle. The derivations for the

differential microphone array are based on the work in [9]. Since differential

arrays of higher order are quite challenging to realize due to non-idealities of

the sensors, the focus is on first order microphone arrays. Anechoic farfield

conditions are assumed, which means the acoustic transfer function vector H

only consists of the direct paths from the mouth reference point of a speaker

to the microphones. This allows to define the elements of the steering vector

d(ν, θ) using (2.15) and (2.16)

di(ν, θ) = Pi(ν, θ)e
−j2πντi , (2.18)

which is required to formulate the constraints for the directional response. One

constraint is the distortionless response for the direction of the desired signal

(θd = 0◦), while the other constraint is to create a spatial null in a chosen

direction θn ∈ [90◦, 180◦].

G
DIFF(ν)†d

(

ν, 0◦
)

= 1 (2.19)

G
DIFF(ν)†d

(

ν, θn
)

= 0 . (2.20)
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For a first order differential array, consisting of M = 2 microphones in endfire

configuration, the solution is given by (for more details, see [9])

G
DIFF =

C

ν
[1,−ej2πντ ]T . (2.21)

C denotes a constant makeup gain factor, which depends on the distance

between the microphones. The delay τ can vary within 0 ≤ τ ≤ τ0. The

time delay τ0 is defined as the propagation time from one microphone to the

other

τ0 =
δ

c
. (2.22)

Note that the factor 1
ν

in equation (2.21) is a lowpass filter to equalize the

highpass characteristic of the differential microphone array output. Dependent

on τ various beam patterns can be formed, which are described by the angle

dependent magnitude transfer characteristic Pdiff (θ) of the differential array

output (for more details, see [25]):

|Pdiff (θ)| = cos

(

θ

180◦
π

)

+
τ

τ0
. (2.23)

Alternatively, the beam pattern can be described by

Pdiff (θ) = (1− b) + b · cos

(

θ

180◦
π

)

, (2.24)

where b is a real value (b ∈ [0, 1]), which can be interpreted as a weighting

between an omnidirectional (b = 0) and a dipole (b = 1) transfer characteristic.

Table 2.1 shows the values of τ
τ0

and b for the corresponding beam patterns.

Table 2.1: Selected directional beam patterns for τ

τ0
and b

Beam pattern
τ
τ0

b

Omnidirectional - 0

Dipole 0 1

Cardioid 1 0.5

Hypercardioid 1
3 0.75

Supercardioid 2
3 0.6



16 2 Noise Reduction using Multichannel Signal Processing

The resulting polar plots are depicted in Figure 2.7.
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Figure 2.7: Differential array beam patterns for varying values of τ

As can be observed, the nulls can be steered from incident angles of 90◦ (270◦)

to 180◦ and all values in between, which allows a blocking of signals coming

from these directions. Due to the restrictions of the steerable null, endfire ar-

rays are used for differential beamforming, where the direction of the desired

speech source (θ = 0◦) is assumed to be known.

The performance measures regarding signal-to-noise ratio improvement as

well as the ability to suppress uniformly distributed noise are defined by the

array gain and the directivity factor [23].

Array Gain

The array gain describes the signal-to-noise ratio improvement at the output of

the array compared to the input signal at one reference microphone denoted

by the index ref . It is defined as

AG =
γout

γin
ref

, (2.25)
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where the input SNR at the reference microphone is defined as

γin
ref =

Φ2
Sref

Φ2
Nref

(2.26)

and the SNR at the beamformer output as

γout =
G

†
RSG

G†RNG
. (2.27)

The array gain can also be described by the filter function vector as

AG =
|G†

d|2

G†R̃NG
. (2.28)

R̃N is the normalized noise correlation matrix (R̃N = RN/Φ2
Nref

), similar as

described in [24].

Directivity Factor

The directivity factor is a performance measure, which indicates the signal-to-

noise ratio improvement for a directional microphone compared to an omni-

directional microphone in a diffuse noise field described by the noise correla-

tion matrix R
diff
N . Quite similar to (2.28), it is defined as

DF =
|G†

d|2

G†R
diff
N G

. (2.29)

For an array consisting of two microphones, the hypercardiod beam pattern

theoretically offers the best directivity factor (4.8 dB), closely followed by the

supercardiod pattern (4.6 dB) [25].

2.2.4 Super Directive Beamforming

Often the problem occurs that more interfering sources than steerable nulls

of a differential microphone array are present. The problem gets even worse
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in environments with strong reverberation. Instead of steering several nulls,

the superdirective beamformer [23, 24] aims to minimize the sidelobes and

narrows the mainlobe of the beam pattern to obtain an optimal directivity factor.

If a steering vector d(ν, θ), as introduced in (2.18), is used, it allows to steer

the beam in the look-direction of the desired speech source by applying the

appropriate delays as described in (2.17).

Further, the noise field is assumed to be diffuse (RN = R
diff
N ). Under the

constraint of a distortionless response in the direction of the speech source

(GSD†
d(ν, 0◦) = 1), the minimization problem can be described as

G = argmin
G

G
†
R

diff
N G (2.30)

subject to: G†
d = 1 (2.31)

and the solution of the superdirective beamformer is given by (for more details,

see [24])

G
SD =

(

R
diff
N

)−1
d

d
†
(

R
diff
N

)−1
d

. (2.32)

Note that for a microphone array consisting of M = 2 microphones the super-

directive beam pattern is equal to the hypercardioid beamformer as depicted

in Figure 2.7 since both achieve the optimal directivity factor for this number of

microphones in a diffuse noise field.

2.3 Minimum Variance Beamforming

In the following, narrow-band signal combining approaches for multiple micro-

phone signals with respect to noise reduction and dereverberation capabilities

are discussed. Therefore linear constrained minimum variance (LCMV) beam-

forming is derived, followed by the derivation of the minimum variance distor-

tionless response (MVDR) beamformer. The MVDR beamformer is capable of

reducing noise while also perfectly equalizing the room acoustic influences if

RN can be estimated sufficiently well and the acoustic transfer function vector

H is known exactly. The derivation of the MVDR beamformer is based on the

work in [20, 21, 22], where it was first introduced by [20]. In [21, 22] the MVDR

beamformer is applied in the context of room acoustics. It can be shown that
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it is a special case of the linear constrained minimum variance (LCMV) beam-

former, which is proposed in [26]. By setting the linear constraint equal to

one of the acoustic transfer functions of the microphone signals, still maximum

signal-to-noise ratio beamforming is achieved, while only knowledge of the sig-

nal correlation matrices RS and RN is required. However, the capability to

equalize the room acoustic influences has to be sacrificed.

2.3.1 The Linear Constrained Minimum Variance Beamformer

Under the assumption that the speech and noise signals are uncorrelated, the

error signal between the output of a beamformer and a speech signal which is

parametrized by an arbitrary transfer function H̃d can be written as

ǫ = G
LCMV†

Y − H̃dX (2.33)

= (GLCMV†
H − H̃d)X +G

LCMV†
N , (2.34)

which can be placed in the mean squared error function given by

ξ(GLCMV) = E
{

|ǫ|2
}

(2.35)

= |(GLCMV†
H − H̃d)|

2Φ2
X (2.36)

+G
LCMV†

RNG
LCMV .

The minimization of the cost function in the minimum mean squared error

sense can be written as

G
LCMV = argmin

GLCMV

G
LCMV†

RNG
LCMV (2.37)

subject to: GLCMV†
H = H̃d (2.38)

where H̃d introduces a degree of freedom in terms of a linear constraint to the

optimization problem.
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The solution to this optimization problem, including the linear constraint, is

given by the LCMV beamformer

G
LCMV =

R
−1
N H

H
†
R

−1
N H

H̃∗
d . (2.39)

2.3.2 The Minimum Variance Distortionless Response Beamformer

By setting H̃d = 1, a distortionless response for the speech signal in the de-

sired look direction is achieved by

G
MVDR =

R
−1
N H

H
†
R

−1
N H

, (2.40)

which is the widely known MVDR beamformer. However, GMVDR requires

knowledge of the acoustic transfer functions, which is mostly not available in

practice, since the blind estimation of acoustic transfer functions in noisy con-

ditions is a challenging task and so far an unsolved problem.

2.3.3 The Relative Transfer Function Minimum Variance Beamformer

By setting H̃d to an explicit reference channel (H̃d ∈ {H1, . . . , HM}), the

knowledge of the correlation matrices RS and RN is sufficient to obtain an

optimum beamformer regarding the narrow-band signal-to-noise ratio as can

be shown in the following. However, the acoustic transfer functions cannot be

equalized with this approach.

If H̃d is set to an explicit reference channel (H̃d = Href ), then the beamformer

can be written as

G
RTF−MV =

R
−1
N H

H
†
R

−1
N H

H∗
ref (2.41)

=
R

−1
N H

H
†
R

−1
N H

H
†
u , (2.42)

where u is a vector of length M which consists of zeros and a single one at

the corresponding position of the selected reference channel.



2.4 The Speech Distortion Weighted Multichannel Wiener Filter 21

By expanding the G
RTF−MV beamformer in the nominator and the denomin-

ator with the clean speech PSD Φ2
X , we obtain

G
RTF−MV =

Φ2
XR

−1
N H

Φ2
XH

†
R

−1
N H

H
†
u (2.43)

=
Φ2

XR
−1
N HH

†

tr (Φ2
XH

†
R

−1
N H)

u (2.44)

=
R

−1
N RS

tr (R−1
N RS)

u , (2.45)

where tr(·) denotes the trace operator. It should be noted that GRTF−MV

now only depends on knowledge of the speech and noise signal correlation

matrices RS and RN and no further knowledge is required for the signal com-

bining.

2.4 The Speech Distortion Weighted Multichannel Wiener Filter

In this section, the speech distortion weighted multichannel Wiener filter (SDW-

MWF) is derived based on the minimum mean squared error (MMSE) criterion,

similar to the LCMV beamformer in section 2.3. This derivation is based on

the work of [1, 2, 3, 4]. In [1], the speech distortion weighted multichannel

Wiener was proposed including a trade-off parameter which allows to control

the amount of noise reduction in relation to linear speech signal distortion.

Therefore speech distortion is explicitly taken into account in the optimization

process.

2.4.1 Minimum Mean Squared Error Solution

Again the MMSE criterion is taken to minimize the mean squared error between

a reference signal and the output of the signal processing algorithm. This

MMSE solution results in the speech distortion weighted multichannel Wiener

filter. The resulting cost function can be written as

G
MWF = argmin

GMWF

E

{

|GMWF†
Y −XH̃d|

2
}

. (2.46)
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The property that noise and speech signals are uncorrelated can be exploited

to write the MMSE signal energy E
{

|ǫ|2
}

as

E
{

|ǫ|2
}

= E
{

|ǫx|
2
}

+ E
{

|ǫn|
2
}

(2.47)

= E

{

|GMWF†
S −XH̃d|

2
}

+ E

{

|GMWF†
N|2

}

. (2.48)

The separation of the speech and noise signal energy can be utilized to include

the trade-off parameter µ in the minimization process which was introduced in

[1]. This leads to the minimization formula

G
MWF = argmin

GMWF

E

{

|GMWF†
S −XH̃d|

2
}

+ µE
{

|GMWF†
N

}

, (2.49)

where the solution is the speech distortion weighted multichannel Wiener filter

G
MWF = (RS + µRN )−1Φ2

XHH̃∗
d (2.50)

which allows a trade-off between speech distortion and noise suppression by

the parameter µ. Further, H̃d can be set to an arbitrary reference channel if we

use a vector u, similar to (2.43) in section 2.3.3, to select the corresponding

transfer function in H.

G
MWF = (RS + µRN )−1Φ2

XHH
†
u (2.51)

= (RS + µRN )−1
RSu (2.52)

Similar to (2.43), GMWF depends only on the speech and noise correlation

matrices RS and RN , so no further knowledge is necessary for this multichan-

nel noise reduction approach.

2.4.2 Decomposition of the Multichannel Wiener Filter

In [27], [7] and many others it is shown that the multichannel Wiener filter can

be decomposed in a MVDR beamformer, a single channel Wiener post filter
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and the overall transfer function H̃d using the matrix inversion lemma

G
MWF =

Φ2
X

Φ2
X + µ(H†

R
−1
N H)−1

R
−1
N H

H
†
R

−1
N H

H̃∗
d (2.53)

= GWF
G

MVDR H̃∗
d . (2.54)

This means, the spatial filtering is performed by the MVDR beamformer where-

as additional broad-band noise reduction is achieved by the spectral filtering

of the Wiener post filter. The overall transfer function is determined by H̃d.

Therefore the LCMV beamformer, as derived in equation (2.39), and the MWF

only differ by the single channel Wiener post filter which is defined as

GWF =
Φ2

X

Φ2
X + µΦ2

N,MVDR

(2.55)

where Φ2
N,MVDR is the noise PSD at the output of GMVDR

Φ2
N,MVDR = G

MVDR†
RNG

MVDR (2.56)

= (H†
R

−1
N H)−1 . (2.57)

2.5 Summary

In this chapter, state-of-the-art signal processing methods for multichannel

noise reduction were derived. Required to describe the signal processing prob-

lem, the signal model and its corresponding notation in the time and frequency

domain were introduced. Two commonly used planar and linear microphone

arrangements of equally spaced sensors were presented, namely the broad-

side array and the endfire array. By introducing a class of constant directivity

beamforming approaches, i.e. the delay-and-sum beamformer as well as dif-

ferential microphone array processing, broad-band noise reduction algorithms

were derived that are able to form a directional response for the beamformer

output. These methods only require knowledge of the direction of arrival for

the desired speech source. By additionally taking information about the correl-

ation properties of the noise field into account, the superdirective beamformer
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was introduced which aims to minimize the beam pattern sidelobe energy for a

diffuse noise field.

Besides the constant directivity beamforming approaches, narrow-band signal

processing algorithms were introduced which are based on the solution of a

minimum mean squared error optimization problem. One of those methods is

the well-known minimum variance beamforming. The derivation of the MVDR

beamformer shows that this approach is able to achieve optimal narrow-band

beamforming while perfectly equalizing the acoustic system. However, this re-

quires knowledge of the acoustic transfer functions, which is hardly available

in practice. With the relative transfer function minimum variance beamformer,

it can be shown that optimal narrow-band beamforming is still possible without

knowledge of the acoustic transfer functions, however, the capability to equal-

ize the acoustic system has to be sacrificed. Despite the lost capability, this

approach has the advantage that only knowledge of the correlation properties

of the speech and noise signals is required.

Similar, the SDW-MWF was derived based on the minimum mean squared

error criterion. It was shown that the property of uncorrelated speech and noise

signals can be exploited to include an additional parameter in the minimization

process, which allows to set a trade-off between speech distortion and noise

reduction.

Based on the matrix inversion lemma, it was presented that the multichannel

Wiener filter can be decomposed into an MVDR beamformer, a single chan-

nel post filter and a resulting overall transfer function. By comparing the SDW-

MWF with the LCMV beamformer, they only differ by the single channel Wiener

post filter, which has no influence on the narrow-band SNR but has the capab-

ility to gain additional broad-band output SNR improvement.
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In the past few years, research on speech enhancement using acoustic sensor

networks consisting of spatially distributed microphones has gained significant

interest [28, 29, 30, 31, 7, 32, 6, 33, 34, 35, 36, 37]. Compared with a micro-

phone array at a single position, spatially distributed microphones are able to

acquire more information about the sound field. The usage of spatially distrib-

uted microphones allows to employ combining techniques for speech quality

improvement in reverberant and noisy conditions. Several methods were in-

troduced that use an explicit reference channel. These include the relative

transfer function - generalized sidelobe canceler (RTF-GSC) [38], the MVDR

beamformer [21] and the speech distortion weighted - multichannel Wiener fil-

ter [1, 2, 3, 4, 5].

The MWF, which is a well-established technique for speech enhancement, pro-

duces a minimum-mean-squared error estimate of an unknown desired signal

as derived in chapter 2. The desired signal of the standard MWF (S-MWF) is

usually the speech component in one of the microphone signals, referred to

as the reference microphone signal. However, for spatially distributed micro-

phones the selection of the reference microphone may have a large influence

on the performance of the MWF since it depends on the positions of the speech

and noise sources as well as the microphones [39, 7, 6, 32].

With the S-MWF, the overall transfer function from the speaker to the output

of the MWF equals the acoustic transfer function from the speaker to the ref-

erence microphone. Hence, the reference microphone selection determines

the amount of speech distortion. Moreover, the overall transfer function has an

impact on the broadband output SNR of the MWF [39]. This raises the need

to select a suitable reference. Therefore, the generalized MWF (G-MWF) was

proposed in order to improve the broadband output SNR [6] (see also [32]).

With the G-MWF, the speech reference is not chosen by selecting one of the

microphone channels as in the standard multichannel Wiener filter, but by a

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019
S. Grimm, Directivity Based Multichannel Audio Signal Processing For Microphones 
in Noisy Acoustic Environments, Schriftenreihe der Institute für Systemdynamik (IDS) 
und optische Systeme (ISO), https://doi.org/10.1007/978-3-658-25152-9_3
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combining of the channels to create a new overall transfer function in order to

improve the broad-band output SNR.

In this chapter, the G-MWF formulation is presented in section 3.1. It is shown

that the G-MWF includes the S-MWF as a special case. The G-MWF derivation

is followed by a discussion of the narrow-band and broad-band output signal-

to-noise ratio in section 3.2 to examine the difference and the dependence of

the broad-band output SNR on the overall transfer function.

This chapter has been presented in [10].

3.1 The Generalized MWF

The SDW-MWF, as proposed in section 2.4, aims to estimate the speech signal

of a chosen microphone channel. It is commonly implemented as

G
MWF = (RS + µRN )−1

RSu , (3.1)

where u is a vector that selects the reference microphone, i.e. the vector u

contains a single one and all other elements are zero

u = [0, . . . , 1, . . . , 0]T . (3.2)

This MWF realization is referred to as the S-MWF in the following. Therefore

for the S-MWF, the overall transfer function is equal to the ATF of a reference

microphone, i.e., H̃d = Href . Since RS is a rank one matrix, it should be

noted that any non-zero vector u achieves the same (optimal) narrow-band

output SNR and therefore it is independent of the choice of u. This implies that

the vector u can be chosen in an arbitrary way to influence the overall transfer

function H̃d.

In [6], the generalized MWF was presented, which allows to define a speech

reference for the MWF by the elements ui of the vector u. This is achieved

by forming a weighted sum of the speech components in the different micro-

phones with the phase of the speech component in the reference microphone

signal.
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The vector u can be used to define the desired overall response as

H̃d = u
†
H =

∑

i

ui
∗ ·Hi for ui ∈ C . (3.3)

By using the decomposition of the MWF, it can be seen that H̃d is indeed the

resulting overall transfer function

G =
Φ2

X

Φ2
X + µ(H†

R
−1
N H)−1

R
−1
N H

H
†
R

−1
N H

H̃∗
d (3.4)

= GWF
G

MVDR H̃∗
d , (3.5)

since without noise reduction, i.e. for µ = 0, the overall transfer function equals

H̃d because G
MVDR has a unity gain transfer function.

In this case, the speech output signal of the processing algorithm can be written

as

ZS = H̃d ·X . (3.6)

3.2 On the Output SNR

In the following, the signal-to-noise ratio for the input signal as well as the

filtered output of the signal processing scheme is considered. Therefore it is

distinguished between the narrow-band as well as the broad-band SNR for the

multichannel Wiener filter. It can be shown that the selection of an arbitrary

transfer function H̃d has no influence on the narrow-band SNR. However, the

resulting output SNR is affected, as is derived in the following.

3.2.1 Narrow-band SNR Considerations

The narrow-band input SNR γin is defined as

γin(ν) =
E

{

SS
†
}

E

{

NN
†
} =

RS

RN

=
Φ2

XHH
†

RN

. (3.7)
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Therefore it follows for the narrow-band input SNR at the ith microphone as

γin
i (ν) =

Φ2
X |Hi|

2

Φ2
Ni

(3.8)

which clearly indicates that γin
i depends on the PSD of the noise signal as well

as on the acoustic transfer function at the ith microphone.

Now, the narrow-band SNR of the MWF output is considered, which is defined

as

γout(ν) =
E
{

|ZS(ν)|
2
}

E {|ZN (ν)|2}
=

G
MWF†

RSG
MWF

GMWF†
RNGMWF

. (3.9)

By using equation (2.53) to exploit the decomposition of the MWF, we obtain

γout(ν) =
(GWF

G
MVDR H̃∗

d )
†
RS(G

WF
G

MVDR H̃∗
d )

(GWF GMVDR H̃∗
d )

†RN (GWF GMVDR H̃∗
d )

=
|GWF |2|H̃d|

2
G

MVDR†
RSG

MVDR

|GWF |2|H̃d|2GMVDR†
RNGMVDR

=
G

MVDR†
RSG

MVDR

GMVDR†
RNGMVDR

. (3.10)

Since H̃d is canceled out in the nominator and denominator term, the narrow-

band output SNR of the MWF is independent of the particular choice of H̃d.

3.2.2 Broad-band SNR Considerations

Next, the broad-band output SNR χout of the MWF is considered, which is

defined as

χout =

∑

ν E
{

|ZS(ν)|
2
}

∑

ν E {|ZN (ν)|2}
(3.11)

=

∑

ν G
MWF(ν)†RS(ν)G

MWF(ν)
∑

ν G
MWF(ν)†RN (ν)GMWF(ν)

.
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Since the MVDR beamformer achieves a distortionless response, the PSD of

the speech component at its output is Φ2
X . Hence, the PSD of the speech

component ZS at the output of the MWF can be written as

E
{

|ZS(ν)|
2
}

= |GWF |2|H̃d|
2Φ2

X . (3.12)

By using the noise PSD at the output of the MVDR beamformer from equa-

tion (2.56), the PSD of the noise component at the output of the MWF equals

E
{

|ZN (ν)|2
}

= |GWF |2|H̃d|
2Φ2

N,MVDR (3.13)

and therefore the broad-band output SNR

χout =

∑

ν Φ
2
X(ν)|GWF (ν)|2|H̃d(ν)|

2

∑

ν Φ
2
N,MVDR(ν)|G

WF (ν)|2|H̃d(ν)|2
. (3.14)

From this equation, it can be seen that the overall transfer function as well as

the single-channel Wiener post filter impact the broadband output SNR.

3.2.3 Broad-band SNR Dependence on the Overall Transfer Function

Next, the response H̃d that maximizes the broadband output SNR is con-

sidered. Equation (3.14) can be rewritten as

χout =

∑

ν αν |H̃d(ν)|
2

∑

ν βν |H̃d(ν)|2
=

H̃
†
d
AH̃d

H̃
†
d
BH̃d

(3.15)
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with

αν = Φ2
X(ν)|GWF (ν)|2

βν = Φ2
N,MVDR(ν)|G

WF (ν)|2

H̃d = [H̃d(0), . . . , H̃d(L− 1)]T

A =















α0 0 . . . 0

0 α1 . . . 0

0 . . .
. . . 0

0 . . . 0 αL−1















B =















β0 0 . . . 0

0 β1 . . . 0

0 . . .
. . . 0

0 . . . 0 βL−1















,

where L denotes the total number of frequency bins. Maximizing χout is

equivalent to solving the generalized eigenvalue problem AH̃d = λBH̃d or

B
−1

AH̃d = λH̃d. The solution to the eigenvalue problem is the eigenvector

corresponding to the largest eigenvalue λmax. Since B
−1

A is a diagonal mat-

rix, the largest eigenvalue is

λmax = max
ν

αν

βν

= max
ν

Φ2
X(ν)

Φ2
N,MVDR(ν)

. (3.16)

Comparing equation (3.16) with (3.14), we obtain the corresponding eigen-

vector H̃d = [0, . . . , 1, . . . , 0]T with a one in the frequency bin corresponding

to the largest eigenvalue and zero elsewhere. Although this overall transfer

function maximizes the broadband output SNR, the corresponding speech dis-

tortion will not be acceptable because only one frequency bin will pass the

beamformer.

As an important conclusion, no optimal H̃d exists to fulfill both requirements

due to this contradiction. The particular choice of H̃d has no effect on the

narrow-band SNR and therefore still achieves optimal narrow-band noise re-

duction. However, the proper selection of H̃d allows a broad-band SNR im-
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provement without increasing speech distortion compared with a single micro-

phone signal. In the following chapter of this thesis, directivity based reference

choices for H̃d are investigated by additionally taking the phase between the

microphone signals into account. This allows to exploit the properties of the

spatial noise field in the design process of a suitable H̃d.

3.3 Summary

In this chapter, the generalized multichannel Wiener filter was derived. It was

shown that the standard multichannel Wiener filter is a special case thereof,

where the overall transfer function equals a dedicated microphone reference

channel. However, the generalized multichannel Wiener filter expands this ap-

proach by applying an appropriate weighting of the individual channels in terms

of a suitable reference vector, which allows to design the resulting overall trans-

fer function. By the distinction between the narrow-band and the broad-band

SNR, it could be shown that the narrow-band SNR is independent of the choice

of the overall transfer function. However, the choice affects the broad-band

SNR. The theoretically optimal solution for the broad-band SNR is not accept-

able regarding the speech distortion. This raises the need for a suitable design

of the overall transfer function, which will be shown in the following chapter.



4 Directivity Based Reference for the Generalized

Multichannel Wiener Filter

In this chapter, different references for the G-MWF are presented. In [6], the

magnitude of the response H̃d was designed to improve the broadband output

SNR, whereas the phase term of H̃d was set equal to the phase of the ATF in

the reference microphone. In [7], an MWF formulation with partial equalization

(P-MWF) was introduced, where the overall transfer function was chosen as

the envelope of the individual ATFs with the phase of an arbitrary reference

microphone. This results in a partial equalization of the acoustic system and

an improved broadband output SNR. While this approach has advantages with

respect to background noise reduction, the reverberation caused by the acous-

tic environment is not reduced. As shown in [40], the all-pass component of a

room impulse response contains strong reflexions and reverberation. This sug-

gests that the phase reference of the G-MWF should be properly designed in

order to improve the output signal-to-reverberation ratio (SRR). Concepts that

aim to reduce reverberation by a suitable combining of the microphone signals

were proposed in [41, 42, 43] and many others.

In contrast to the approaches in [6, 7], in this work a complex-valued selection

vector u ∈ C is considered, which takes the phase into account for the design

of a directivity based overall transfer function H̃d. Firstly, a spatially distributed

microphone arrangement is considered. Two references are presented that

can improve the signal-to-reverberation ratio (SRR) and the broadband output

SNR compared with the S-MWF and the P-MWF. Both proposed references are

based on a delay-and-sum beamformer (DSB), which aims to augment the dir-

ect path of arrival of the speech source. One approach uses the delay-and-sum

beamformer directly as a reference, whereas the other approach combines the

phase of the DSB with the reference of the P-MWF.

Further directivity based references for the G-MWF are introduced in this chap-

ter which are based on differential microphone array beamforming [9]. There-
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fore a closely spaced microphone arrangement in endfire configuration is con-

sidered to form a bipolar, a cardioid and a hypercardioid beam pattern. This

allows to create a directional response for the desired overall transfer function

H̃d. As a result, the broadband output SNR as well as the log spectral dis-

tance (LSD) can be potentially improved, due to the suppression of noise and

reflections coming from other incident angles than the direction of the speech

source.

For these directivity based references, knowledge of the second order statistics

of the speech and noise signals as well as the time-difference-of-arrival (TDOA)

of the speech source between the microphones is required. In the literature

several methods for TDOA-estimation were proposed [44, 45, 46, 47, 48, 49,

50]. Many of these techniques are summarized in [51]. The TDOA estimation is

closely related to the estimation of the linear phase term of the relative transfer

function (RTF) between the speech signals. Using the approach proposed

in [52], which allows to obtain an unbiased RTF estimate in noisy conditions,

an unbiased TDOA-estimate can be obtained from the non-diagonal elements

of the speech correlation matrix RS .

This chapter is outlined as follows. The design of the overall transfer function

for some special cases of the G-MWF are presented in section 4.1. In sec-

tion 4.2, the additional knowledge of the TDOA between the signals is used

to create the directivity based reference vectors. By applying the delay-and-

sum approach to form a reference, reverberation is reduced due to coherent

combining of the direct signal path. Differential beamforming is used to form

a reference, which creates a spatial beam pattern for the overall transfer func-

tion. The block diagram of the system is presented in section 4.3. In section

4.4, the estimation of the noise and speech correlation matrices in stationary

noise conditions is presented, while the related TDOA estimation and the chal-

lenge of acquiring these estimates in noisy and reverberated environments due

to biased estimates is presented in section 4.5. In section 4.6, simulation res-

ults are presented. The delay-and-sum references are applied for two different

simulation scenarios with distributed microphones and the SNR and SRR im-

provements are examined. The differential beamforming references are ap-

plied in the context of a monaural hearing aid and closely spaced microphones

in two different environments and the results regarding the SNR improvement

as well as the LSD are presented. Finally a summary is given in section 4.7.
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The content of this chapter has been partly published in [11, 10] and [12].

4.1 G-MWF Reference Selection

In the following, special cases for the design of the G-MWF reference vector

are presented. Note that the different formulations of the G-MWF differ only

with respect to the vector u and the corresponding transfer function H̃d. The

resulting overall transfer functions only equal H̃d if no additional post filtering

is applied (µ = 0).

4.1.1 Distortionless Response Beamformer

The distortionless response beamformer obtains perfect equalization of the

acoustic system, where the overall transfer function is chosen to be H̃d = 1.

Hence, the elements of the reference vector u are

ui =
Hi

H
†
H

. (4.1)

However, the resulting G-MWF requires perfect knowledge of the ATFs from

the speaker to the microphones, which is often not available in practice.

4.1.2 Partial Equalization Approach

In [7] the P-MWF has been presented, where the amplitude of the overall trans-

fer function is defined as the envelope of the individual ATFs, and the phase is

chosen as the phase φref of an arbitrary (reference) ATF, i.e.,

H̃d =

√

H
†
H ejφref . (4.2)
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This formulation results in a partial equalization of the acoustic system, since

the dips in the magnitude response of the individual ATFs can be avoided. The

elements of the vector u can be computed as

ui =

√

rSi,i

tr(RS)

rSi,ref

|rSi,ref
|
=

Hi
√

H
†
H

e−jφref , (4.3)

where again tr(·) denotes the trace of the matrix and rSi,j
denotes the element

of RS in the ith row and jth column. Hence, for the P-MWF we have

RSu = RS

H
√

H
†
H

e−jφref = Φ2
XH

√

H
†
H e−jφref . (4.4)

Compared to the MVDR beamformer reference in section 4.1.1, the advantage

of the P-MWF is that it only depends on estimates of the second order statistics,

i.e. RS and RN . No explicit knowledge of the ATFs is required. Compared

to the S-MWF, which also only depends on the signal statistics, the P-MWF

approach is able to partially equalize the magnitude response of the ATFs.

However, it should be noted that the output signal is as reverberant as the

selected reference ATF due to the reference channel selection of the phase

component.

4.2 Directivity Based G-MWF Reference Selection

In the following, the new reference selection approaches for the G-MWF are

introduced, which take the knowledge of the TDOA into account to form a dir-

ectivity based overall transfer function. Two references for spatially distributed

microphones in a reverberant environment are introduced, which use a phase

reference from a DSB to augment the direct path of the desired signal. Fur-

thermore, for the application of closely spaced microphone arrays, differential

beamforming references are presented, which allow to form a directional re-

sponse for the overall transfer function.

The choice of the reference selection is dependent on the microphone arrange-

ment, the location of the desired signal source and the acoustic environment.

The DSB references are suitable for microphone arrangements with larger dis-

tances between the acoustic sensors to benefit from the spatial diversity of
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the sound field. For closely spaced sensors, the acoustic transfer functions

are nearly identical, so the spatial sampling of the sound field is very limited

and no significant improvement regarding SNR and SRR can be made by this

approach compared with a single microphone. However, for the differential

reference choices, which rely on sound pressure differentials between the mi-

crophones, the sensor spacing has an impact on the performance. By placing

the sensors in greater distance, acoustic influences and decorrelation of the

signals (especially for the noise terms) violate the assumptions necessary for

the differential beamforming and degrade the noise reduction capability. As

a result, the microphones need to be spaced closely in contrast to the DSB

reference choices.

4.2.1 Delay-and-Sum Beamformer

In the first approach it is proposed to simply use the output of a delay-and-

sum beamformer as the speech reference. The corresponding elements of the

vector u can be described as

ui =
1

M
· ej2πντi , (4.5)

where τi is a delay, which compensates the TDOA of the direct path speech

components at the microphones. The speech components are typically aligned

in relation to the microphone with the latest arrival time to obtain a causal DSB.

Using (3.3), the overall transfer function is obtained

H̃d =
1

M

∑

i

Hie
−j2πντi . (4.6)

4.2.2 Partial Equalization with DSB Phase Reference

The second approach is a combination of the P-MWF of [7] with the DSB as

the phase reference only. As already described in section 4.1.2, the phase

reference of the P-MWF is the phase of an arbitrary ATF. In order to improve
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the SRR, the DSB can be used as the phase reference. The resulting vector u

can be described as

ui =

√

rSi,i

tr(RS)
· ej2πντi , (4.7)

where again τi is a delay to compensate the TDOA of the speech signal direct

path. Note that the phase term impacts the magnitude of the overall transfer

function H̃d, cf. (3.3). Comparing (4.3) and (4.7) results in

ui =
|Hi|

√

H
†
H

ej2πντi (4.8)

and the overall transfer function equals

H̃d =
1

√

H
†
H

∑

i

|Hi|Hie
−j2πντi (4.9)

=
1

√

H
†
H

∑

i

|Hi|
2ej(φi−2πντi) . (4.10)

Hence, the direct path speech components in the microphones are aligned

but additionally the microphone signals are weighted with the magnitude of

the ATFs similar to the P-MWF approach. This achieves a partially equal-

ized magnitude response for the overall transfer function due to the magnitude

weighting, while simultaneously the DSB phase reference improves the dere-

verberation capabilities of the chosen reference vector design.

4.2.3 Differential Beamforming Reference

The differential beamforming references allow to form a spatial beam pattern

as an overall transfer function H̃d for the G-MWF. Similar to the delay-and-sum

beamformer, the TDOA of the speech signal at the microphones is required to

form the directional response. In contrast to the DSB, the microphones need

to be positioned in an endfire array configuration pointing towards the desired

speech source to achieve their best performance. The described references

for the G-MWF form first order differential array beam patterns, which means

a minimum of two microphones is required to realize the desired directional

response [9]. The described references only differ in the delay τ to form the
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required beam pattern. In this work, an endfire array consisting of two micro-

phones is considered for the differential beamforming references.

Dipole Pattern

The dipole pattern reference creates a null for signals arriving from an incid-

ent angle of 90◦(270◦) regarding the position of the endfire array. No delay

elements are required to realize this reference, which creates an H̃d with the

desired directional behavior. For an array consisting of two microphones, the

corresponding reference vector u can be written as

u = GEQ∗
[1,−1]T , (4.11)

where GEQ denotes a compensation filter for the first order high pass behavior

created by the differential output.

Cardioid Pattern

The cardioid pattern reference is able to create a single null at an incident angle

of 180◦ for the overall transfer function H̃d, which means signals coming directly

from the back of the endfire array are totally suppressed. τ0 is the propagation

time of planar sound waves traveling between the two microphones as derived

in (2.22). For M = 2 microphones, u equals to

u = GEQ∗
[1,−ej2πντ0 ]T . (4.12)

Hypercardioid Pattern

The hypercardioid beam pattern reference creates a null at an incident angle of

110◦(250◦). In sound fields consisting of diffuse noise, the hypercardioid beam

pattern is able to achieve the biggest SNR improvement due to its directivity

index. The corresponding reference vector u for the G-MWF is realized as

u = GEQ∗
[1,−ej2πν

τ0
3 ]T . (4.13)
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Equalization Filter GEQ

GEQ is the required equalization filter to compensate the high pass behavior of

the differential microphone array output. Additionally, the gain loss needs to be

compensated with a constant amplification factor. By comparing the differential

array references for the G-MWF with (2.21), GEQ can be written as

GEQ =
C

ν
, (4.14)

where the constant C compensates for the gain loss and 1
ν

equalizes the high

pass behavior due to the differential output characteristic.

As an alternative approach, the filter GEQ can be derived in anechoic and

noise free conditions in the MMSE sense by minimizing the error between the

uncompensated output of the differential array and a selected reference speech

signal

GEQ = argmin
GEQ

E
{

|([1,−e−j2πντ ]S)GEQ − Sref |
2
}

. (4.15)

4.3 System Structure of the G-MWF

Figure 4.1 depicts the block diagram of the G-MWF for an array of two micro-

phones. Since the filtering is performed in the frequency domain, the micro-

phone signals are first windowed and then transformed using the fast Fourier

transform (FFT).

TDOA

Windowing

+FFT

Windowing

+FFT

Estimation Estimation

+
+

1G

2G

+
IFFT

+OLA

X ·H1

X ·H2

N1

N2

Y1

Y2

RN RS
u

ZS

Figure 4.1: System structure for multichannel Wiener filtering with vector u [10]

Estimation
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4.4 Estimation of the Second Order Statistics for Speech and Noise

One important aspect of noise reduction filtering is the estimation of the speech

and noise correlation matrices RS and RN , since the actual PSDs and cross

power spectral densities (CPSDs) are not available in practice. Often a voice

activity detector (VAD) [53, 54] is used to determine whether speech is present

or absent to update the noise or speech PSD estimates. Another approach

to obtain these estimates is based on minimum statistics [55, 56] with the ad-

vantage that no VAD is required. A frequency-dependent VAD, as proposed

in [57], allows to update the noise estimates even during speech presence,

since speech is a signal that is sparse in time as well as in the frequency do-

main. The speech activity detection in [57] is based on a simple threshold test,

where the current input power is compared to the estimated noise PSD which

is multiplied by a threshold value

V AD(η, ν) =

{

1, for |Y(η, ν)|2 ≥ Φ2
N(η, ν)Θ(ν)

0, else .
(4.16)

Θ(ν) denotes the threshold value which is allowed to be set frequency depend-

ent (for more details, see [57]). In case speech is absent, i. e. V AD(η, ν) = 0,

RN is updated by the noise PSD and CPSD estimates. These are obtained by

recursive smoothing in frequency bins where speech is absent

rNi,j
(η, ν) =

{

ζrNi,j
(η − 1, ν) + (1− ζ)Yi(η, ν)Yj(η, ν)

∗, for V AD(η, ν) < 1

rNi,j
(η − 1, ν), else .

(4.17)

ζ denotes the recursive smoothing parameter. Since speech and noise are

assumed to be uncorrelated, the estimate of the speech correlation matrix can

be obtained by

RS = RY −RN . (4.18)

4.5 TDOA Estimation

For the directivity based reference vectors as proposed in section 4.1, the

TDOA from the speaker to the microphones is required to achieve a coher-



42 4 Directivity Based Reference for the Generalized MWF

ent summation of the direct path for the delay and sum beamformer, as well

as to steer the spatial nulls of the differential beamformer reference. A very

popular TDOA estimation approach is the generalized cross correlation (GCC)

method [44, 49, 51], where the cross-correlation between the microphone sig-

nals is calculated in the frequency domain as the cross power spectral density.

Depending on the application and the environmental conditions, the CPSD is

typically filtered by a weighting function to achieve a better TDOA estimation

in terms of a sharper peak of the cross-correlation in the time domain. For

example, the GGC-PHAT method performs a spectral whitening of the CPSD

magnitude spectrum to obtain a CPSD which only depends on the phase re-

lation between the signals. This approach achieves good estimates in rever-

berant environments [47], whereas for noisy conditions a coherence-based or

SNR-based weighting function is preferred [58].

To obtain the TDOA, the weighted CPSD is transformed to the time domain

using the inverse Fourier transform resulting in the cross correlation vector. The

main peak in the cross correlation vector indicates the time delay in samples.

To achieve a sub-sample TDOA estimate in terms of fractional delays, methods

as the parabolic fitting can be used to acquire a more accurate estimate [59,

60]. The TDOA estimate is only valid in signal blocks where the speaker is

active, which can be determined by using voice activity detection.

It should be noted that the phase of the CPSD is equal to the phase of the

relative transfer function (RTF) between the microphones since both only differ

from a different magnitude response. Since in general the microphone sig-

nals contain correlated noise components, estimating the RTFs directly from

the noisy microphone signals leads to biased RTF estimates. Several methods

for unbiased RTF estimation have been proposed, e.g., by exploiting the non-

stationarity of speech signals [38, 61] or by using the generalized eigenvalue

decomposition of RY and RN [62, 63]. In [52], an approach for unbiased

RTF estimation was proposed, requiring estimates of the PSDs and CPSDs

of the speech and noise components, which can be obtained from the estim-

ated speech and noise correlation matrices RS and RN . The RTF estimate

between microphones i and j is computed as a combination of two weighted

coefficients

Ŵunbiased = fi
rSi,j

rSi,i

+ fj
rSj,j

rSj,i

, (4.19)
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where the terms fi and fj are SNR based weighting coefficients which are

defined as

fi =

rSi,i

rNi,i

rSi,i

rNi,i

+
rSj,j

rNj,j

(4.20)

fj =

rSj,j

rNj,j

rSi,i

rNi,i

+
rSj,j

rNj,j

. (4.21)

The approach in [52] is slightly modified, based on a frequency dependent

VAD [57], where the RTF estimate is updated only in frequency bins where

speech activity is detected. Furthermore, a recursive smoothing parameter

to average the RTF estimate is used, which is the rate of all frequency bins

where speech activity is detected. By applying the inverse Fourier transform,

Ŵunbiased can be transformed back into the time domain, which results in the

vector ŵunbiased. The location of the peak value that indicates the delay to the

microphone j can be calculated as

τi = max
k=0,...,L−1

ŵunbiased(k) , (4.22)

where ŵunbiased(k) is the k-th element of the vector ŵunbiased.

4.6 Simulation Results

In the following, the simulation results for the proposed references of the G-

MWF are presented. Since the performance of the different G-MWF approach-

es are dependent on the choice of the microphone arrangement, simulation

environments with different arrangements are chosen, based on the reference

selection. For the DSB references, simulation environments with distributed

microphones are investigated, which offer the potential to acquire spatial di-

versity. One of them is a vehicle interior, since acoustically it offers a very short

reverberation time but has a low SNR due to the driving noise. The other one

is a classroom, which has a good SNR but is very reverberant.

For the differential beamforming approaches, a closely spaced microphone ar-

rangement of a monaural hearing aid is examined since this offers the potential
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to form directional beam patterns. Simulations are carried out in a rather an-

echoic space as well as a more realistic scenario which allows to investigate

the influence of reverberant acoustics on the performance.

4.6.1 Delay-and-Sum Reference

The Simulation Environment

To investigate the potential SRR and SNR improvements provided by the pro-

posed DSB reference for the G-MWF, simulations were carried out in two dif-

ferent environments as depicted in Figure 4.2. One is a noisy car environment,

which could be the use case of a typical hands-free communications situation

(Figure 4.2a). The other scenario is a reverberant classroom, which could re-

flect a teleconferencing situation (Figure 4.2b). All simulations were performed

with a sampling rate of 16 kHz and an FFT length L = 512 with an FFT shift

of 128 samples. For the overlapp-add implementation a Hamming window was

used. The signals for testing the algorithms are ITU speech signals convolved

with measured impulse responses. For the car scenario, this was done with

an artificial head and two cardioid microphones that were mounted close to

the rear-view mirror. For the class-room scenario, the acoustic measurements

in [64] were used. These include impulse responses which were recorded with

a loudspeaker and omnidirectional microphones at two different spatial loca-

tions with a microphone distance of 0.5 m. The reverberation time RT60 of the

class-room has a value between 1.5 and 1.8 seconds over all frequencies.

Energy Decay Curves

In the following, G-MWF-1 denotes the G-MWF that uses the DSB as the

speech reference, i.e. (4.5), whereas G-MWF-2 denotes the partial equaliz-

ation approach, using the DSB only as a phase reference, i.e. (4.7). For the

S-MWF and the P-MWF, Y1 was used as the reference. To evaluate the dere-

verberation capabilities of the algorithms, the energy decay curves (EDCs) [65]

of the resulting overall transfer functions H̃d were calculated (for µ = 0) using

the measured impulse responses. The resulting EDCs are shown in Figure

4.3.
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Figure 4.2: The two different simulation environments

For the car environment, the resulting EDCs are shown in Figure 4.3a. Curve

(a) depicts the EDC of the overall transfer function for the S-MWF. Curve (b)

depicts the resulting EDC of the overall transfer function of the P-MWF. Com-

pared with (a), it can be observed that the decay time is increased but the

energy of the first reflections is reduced due to the partial equalization as can

be seen from the first 230 samples of the EDC. Curve (c) and (d) depict the

EDC of the overall transfer function for the G-MWF-1 and G-MWF-2 respect-

ively. Compared with (a) and (b), a reduced decay time is observed due to the

coherent combining of the phase terms. As a result, the direct components of

the acoustic transfer functions are enhanced, which leads to an improvement

in speech quality of the overall system.

For the class-room scenario, the resulting EDCs are shown in Figure 4.3b.

Due to the longer reverberation time, compared with the car environment, the

resulting EDCs show a different behaviour. Curve (e) and (f) depict the EDCs

of the resulting transfer function for the S-MWF and the P-MWF respectively.

Curve (g) and (h) depict the EDCs of the overall transfer functions for the G-

MWF-1 and the G-MWF-2. Compared to (e) it can be observed in (f) that

the direct signal component for the first few samples is augmented due to the

partial equalization, but that the decay time is increased. While (h) still shows

a slightly better performance than (g) for the first 7000 samples, the decay

(a) Simulation environment - car (b) Simulation environment - classroom
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time is increased by a small amount compared with (h) during the samples

7000 − 10000. However, the reverberation energy for the G-MWF-1 and G-

MWF-2 in (g) and (h) is noticeably reduced compared with (e) and (f).

Direct-to-Reverberation Ratio

As a measure of reverberation, the direct-to-reverberation ratio (DRR) can be

calculated from the resulting overall transfer functions H̃d. The DRR is defined

as [66]

DRR = 10 log10











kd
∑

k=0

h̃2
d(k)

∞
∑

k=kd+1

h̃2
d(k)











dB , (4.23)

where h̃d is the impulse response of the overall transfer function H̃d in the time

domain and kd are the samples of the direct path. For kd, a time interval of

8 ms after the first arrival of the direct sound is considered. In Table 4.1 the

DRR values for the different overall transfer functions H̃d are presented. From

the Table it can be seen that the G-MWF approaches improve the DRR in both

scenarios compared with the S-MWF and P-MWF.

Table 4.1: DRR of the overall transfer function for choosing a different phase and mag-

nitude reference

S-MWF P-MWF G-MWF1 G-MWF2

car scenario 12.6 dB 9.3 dB 14.7 dB 14.3 dB

class-room

scenario

-3.8 dB -3.8 dB -1.4 dB -1.6 dB

Resulting Overall Transfer Function

Both versions of the G-MWF result in similar overall transfer functions. This

can be observed in Figure 4.4. Figure 4.4a presents the magnitude response

of the acoustic transfer functions H1 and H2 of the car environment for both mi-

crophones as well as the overall transfer function of G-MWF-2 for frequencies
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Figure 4.3: Energy decay curve for different H̃d formulations in the two simulation

environments
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between 2600 and 4000 Hz. The resulting partial equalization of the G-MWF-2

can be clearly seen. Figure 4.4b depicts the overall transfer function of both

G-MWF versions for the same frequency section but with different scaling. It is

shown that the magnitude responses of both approaches are quite similar.

Segmental Output SNR and SRR Improvement

Finally, we consider a noisy car scenario to evaluate the SNR and SRR im-

provement capabilities. The noise was recorded at a driving speed of 100 km/h

with the same microphone set-up as specified in the simulation environment.

For µ > 0, the MWF performs an adaptive noise reduction with the estim-

ated speech and noise correlation matrices as described in section 4.4 and

therefore the resulting overall transfer function is time-varying. As a result,

signal-based performance measures for the noise reduction and dereverbera-

tion performance need to be used. For the dereverberation performance, the

signal-to-reverberation ratio (SRR) after [66] is used, i.e.,

SRR = 10 log10

(

E
{

|sd(k)|
2
}

E {|zs(k)− sd(k)|2}

)

dB , (4.24)

where sd(k) is the direct path signal component of the reference microphone

and zs(k) is the output signal of the algorithm in the time domain. It should be

noted that this measure is only valid for signal segments where speech activity

is detected.

Regarding the broadband output SNR improvement, the segmental output SNR

(SSNR) is used for evaluation [67]. It is calculated as the average SNR value

of speech active signal frames

SSNR =
1

K

K−1
∑

q=0

[

10 log10

(

∑Pq+O−1
k=Pq |s̃(k)|2

∑Pq+O−1
k=Pq |ñ(k)|2

)

]35

−10

(4.25)

where K is the number of speech active frames and s̃(k) and ñ(k) are the

speech and the noise components. O and P denote the frame length and the

frame shift, which are chosen by 512 and 256 samples. An ideal voice activity

detection was used to determine speech active frames and the maximum and
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Figure 4.4: Magnitude response for different H̃d formulations



50 4 Directivity Based Reference for the Generalized MWF

minimum SNR values for each frame are limited to −10 dB and 35 dB respect-

ively. To evaluate the SSNR improvement, the speech and noise terms zs(k)

and zn(k) at the output of the algorithm are used for the calculation.

Table 4.2 presents the results for the SRR and the segmental output SNR for

two settings of the trade-off parameter µ, where a larger value of µ results in

more noise reduction. The SRR was measured in time frames where speech

was present. The performance of both G-MWF approaches are compared with

the S-MWF and P-MWF. It can be observed that both G-MWF approaches

outperform the S-MWF in terms of SRR and SSNR improvement. G-MWF-

1 outperforms the P-MWF in terms of SRR and SSNR, whereas G-MWF-2

improves the SRR compared to G-MWF-1 at the expense of a small SSNR

loss.

Table 4.2: SRR and SSNR comparison for different MWF formulations

µ = 0 SSNR SRR

S-MWF -1.94 dB 2.87 dB

P-MWF -0.86 dB 2.29 dB

G-MWF1 -0.72 dB 4.69 dB

G-MWF2 -1.33 dB 5.86 dB

µ = 30 SSNR SRR

S-MWF 2.82 dB 1.66 dB

P-MWF 4.35 dB 1.81 dB

G-MWF1 4.90 dB 3.49 dB

G-MWF2 4.25 dB 5.08 dB

As can be observed from the presented simulation results, the newly intro-

duced reference choices are indeed capable to improve the SSNR while sim-

ultaneously reducing reverberation. This is achieved by taking the phase term

into account for the design of the overall transfer function. Compared with the

S-MWF and the P-MWF, the DSB references obtain an SSNR improvement as

well as an augmentation of the direct signal for the car environment and the

classroom scenario.
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4.6.2 Differential Beamforming Reference

The Simulation Environment

For the simulations of the differential beamforming references, a simulation

scenario with a monaural hearing aid consisting of two closely spaced micro-

phones mounted on an artificial head is examined. Therefore an anechoic

environment with an cylindrically isotropic noise field as well as a more realistic

situation in a cafeteria is considered for the simulations. The datasets to cre-

ate the simulations are obtained from the database of multichannel in-ear and

behind-the-ear head-related and binaural room impulse responses in [68]. The

sampling rate for all simulations is 48 kHz and a FFT length of L = 512 was

used with a blockshift of 128 samples. For the overlapp-add implementation,

a Hamming window was used. The spacing between the microphones of the

hearing aid is 7.6 mm.

Figure 4.5: Microphone arrangement for the monaural hearing aid

For the anechoic environment as depicted in Figure 4.6a, the incident angle of

the signal source can be varied in steps of 5◦. To create a cylindrically isotropic

noise field, uncorrelated white Gaussian noise sources where convolved with

the impulse responses from every possible incident angle of the signal source

to the microphones of the hearing aid on the artificial head. For the cafeteria

scenario as depicted in Figure 4.6b, a signal source with a distance of 102 cm

7,6 mm

middle front
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and an incident angle of 0◦ was used for the simulations. The noise signals

are background noise recorded with the microphones of the hearing aid. For

both simulation scenarios, female and male ITU speech samples were used

that were convolved with the impulse responses from the signal source to the

microphones.

For both simulation scenarios, the PSDs, the CPSDs as well as the TDOA for

the microphones are assumed to be known. The values of RS and RN are

calculated for the whole dataset and the G-MWF is applied as a batch job.

m
0
◦

180
◦

−90
◦

90
◦

(a) Simulation environment - anechoic

1 2 m

(b) Simulation environment - cafeteria

Figure 4.6: The different simulation environments for the monaural hearing aid

Equalization Filter GEQ

The equalization filter GEQ for the differential beamforming references is cal-

culated as described in (4.15) for the anechoic simulation environment and a

signal source coming from an incident angle of 0◦, where the signal at the front

microphone Y1 is chosen as the reference. The resulting magnitude response

of the equalization filter for the dipole, the cardioid as well as the hypercardioid

is depicted in Figure 4.7.

As can be observed, the magnitude response of all filters look quite similar

with a variation in the gain factor. The slope of the curves show a first order

80c

0 c
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Figure 4.7: Magnitude response of equalization filter GEQ for different beam patterns

low pass behavior to compensate for the first order high pass behavior of the

differential output signal in the low frequencies, with only small derivations in

the higher frequencies. The obtained filters are used in the following simu-

lations for frequency response compensation on the anechoic as well as the

cafeteria environment. Note that a compensation for very low frequencies does

not make any sense due to the lack of speech signal energy.

Segmental SNR and LSD

In the following, the SSNR improvement capabilities of the proposed differential

beamforming references compared with the S-MWF are examined. The SSNR

is calculated for frequencies between 400 Hz and 4 kHz by band-limiting the

signals. For further comparison, the P-MWF as well as the G-MWF1 (G-MWF

with delay and sum reference) are also applied. The obtained results for the

cylindrically isotropic noise field in the anechoic environment as well as the

cafeteria environment with real background noise are presented in Table 4.3.
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Table 4.3: Segmental SNR comparison for different G-MWF references (angle: θ =

0
◦)

µ = 1 Anechoic environment Cafeteria environment

Microphone 1 (front) 5.6 dB 4.1 dB

S-MWF 7.7 dB 5.3 dB

G-MWF1 7.9 dB 5.2 dB

P-MWF 7.9 dB 5.2 dB

Dipole reference 8.5 dB 6.5 dB

Cardioid reference 8.6 dB 6.6 dB

Hypercardioid reference 8.8 dB 7.0 dB

As can be observed, the S-MWF is capable to improve the SSNR by over

2 dB for the anechoic environment. It should be noted that the SSNR gain

is quite small in general due to the batch job processing, i.e., the filters are

stationary. The P-MWF as well as the G-MWF1 perform quite similar to the

S-MWF in both scenarios since the microphones are closely spaced and the

channel diversity is quite small. However, the differential performing references

show a significant SNR improvement for both simulation scenarios, where the

hypercardiod reference selection shows the best performance regarding the

SSNR.

For the cafeteria environment, a spectogram is shown in Figure 4.8. It depicts

the output signal for the reference microphone, the S-MWF as well as the G-

MWF with the hypercardioid reference. As can be seen, the S-MWF reduces

the background signal energy, however, the G-MWF with the hypercardioid

reference is able to reduce the background noise energy even more.

In Table 4.4 the results regarding the log spectral distance are presented. The

log spectral distance measures the linear distortion in comparison to a refer-

ence spectrum. It is calculated as

LSD =

√

√

√

√

√

1

L

∑

ν



10 log10







E

{

|S̃(ν)|2
}

E {|X(ν)|2}











2

(4.26)
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Figure 4.8: Spectogramm of the output signals for the cafeteria environment (µ = 3)

Table 4.4: Log spectral distance comparison for different G-MWF references (angle:

θ = 0
◦)

µ = 1 Anechoic environment Cafeteria environment

Microphone 1 (front) 3.6 dB 3.9 dB

S-MWF 2.6 dB 4.5 dB

G-MWF1 2.3 dB 4.4 dB

P-MWF 2.4 dB 4.4 dB

Dipole reference 2.0 dB 4.5 dB

Cardioid reference 2.2 dB 4.4 dB

Hypercardioid reference 2.1 dB 4.4 dB

where S̃(ν) is the signal which is compared to the signal X(ν) at the mouth-

reference point. For the LSD evaluation of the output signal of the algorithm

ZS(ν) is used for S̃(ν).

As can be observed, the values are slightly improved for the differential beam-

forming references in the anechoic scenario, while the P-MWF and the G-

MWF1 show similar values compared with the S-MWF. In the cafeteria en-
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vironment, the LSD for all references is similar to that of the S-MWF, however,

the SNR improvement for the differential beamforming references is superior

to the S-MWF.

Angle Dependent Segmental SNR

In the following, the segmental SNR for speech and noise sources of varying

incident angles in the anechoic environment are examined for the differential

beamforming references. Since only a monaural hearing aid for the left ear is

used for the simulations, the angle is varied within 0◦ to −180◦. The simulation

results are depicted in Figure 4.9.

In Figure 4.9a, a single noise source of white Gaussian noise is varied for incid-

ent angles θ from 0◦ to −180◦. The speech source stays at a fixed position of

θ = 0◦. Compared with the S-MWF which uses the reference microphone, the

dipole, the cardioid as well as the hypercardioid show an improved segmental

SNR for nearly all incident angles except for incident angles between −150◦

and −180◦, where the dipole reference shows a slightly inferior performance.

The SSNR has its maximum value mainly at the incident angles where the dif-

ferential beamformer is supposed to suppress the noise source best. This is

−90◦ for the dipole, −180◦ for the cardioid and −110◦ for the hypercardioid

beam pattern. As can be observed, these values are mainly identical to the

simulation results.

In Figure 4.9b, a cylindrically isotropic noise field in the anechoic environment

is considered. The speech source is varied within incident angles of 0◦ to

−180◦ and the G-MWF for the differential beamforming references is calcu-

lated. Compared with the S-MWF, which uses a reference microphone for the

overall transfer function, the differential beamforming references show a su-

perior SNR performance for incident angles of the speech source within 0◦

to −40◦. If the speech source is coming from incident angles within −45◦ to

−180◦, the signal is clearly suppressed compared with the S-MWF using a ref-

erence microphone. Again, the maximum suppression angles of the differential

beamforming references can be detected by the SNR minimum values in the

plot.
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Figure 4.9: Angle dependent segmental SNR plots for directional H̃d references in

anechoic environment
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4.7 Summary

In this chapter, new references for the generalized multichannel Wiener filter

were introduced. Instead of applying a weighted sum of the individual chan-

nels, additional information about the TDOA was used to design a class of

directivity based references for the G-MWF. By applying the concept of delay-

and-sum beamforming to augment the direct signal path of the desired speech

source, two new references were introduced that aim to improve the broadband

output SNR while simultaneously reducing reverberation. Therefore, the delay-

and-sum beamfomer is used directly in one reference design. In another ap-

proach the delay-and-sum beamformer is combined with the P-MWF reference

to obtain a partial equalization of the overall transfer function and reduced re-

verberation due to the DSB phase reference. By introducing a class of differen-

tial beamforming references for the G-MWF, the directional response is allowed

to be implicitly designed. Also for this class of references the TDOA regarding

the desired speech source is required to form a dipole, a cardioid and a hyper-

cardioid G-MWF reference. Since the knowledge of the TDOA is essential for

these directivity based references, a suitable estimate for noisy conditions is

introduced based on an unbiased RTF estimation approach in [52].

To verify the reference choices, simulations were performed for two different

microphone arrangements. For the delay-and-sum references, spatially dis-

tributed microphones were chosen for a noisy car as well as a reverberant

classroom environment. These aim to simulate typical application use cases,

i.e., a hands-free communication and a teleconferencing scenario. For both

scenarios, the calculation of the energy decay plots show that the reverber-

ation energy of the resulting overall transfer function is indeed reduced com-

pared with the acoustic transfer functions of the individual channels. Also the

direct-to-reverberation ratio is improved for the car as well as the classroom.

By comparing the overall transfer function of the partial equalization to the

delay-and-sum beamformer, both show a similar magnitude response which

suggests a partial equalization of the overall transfer function for both refer-

ence choices. In the car environment the G-MWF was simulated in an ad-

aptive manner, which results in a time-varying MWF filter function. Therefore

signal-based performance measures for the SNR improvement as well as the

dereverberation capabilities are applied in terms of the signal-to-reverberation
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ratio and the segmental SNR. Both delay-and-sum references show a superior

performance regarding the SRR compared with the S-MWF and the P-MWF

and are also able to further improve the segmental SNR.

For the differential beamforming references simulations were performed by a

monaural hearing aid consisting of two closely spaced microphones. These

were used in an anechoic simulation environment as well as a cafeteria. The

former allows to create a cylindrically isotropic noise field while the latter con-

tains recordings of real background noise. Simulations results show that the

directional beam pattern references for the G-MWF perform superior to the

S-MWF in terms of SNR improvement for the anechoic environment and the

cafeteria. The highest SSNR gains for both cases are obtained by the hy-

percardioid reference. The log-spectral distance is preserved for all differen-

tial beamforming references compared with the S-MWF. The P-MWF and the

DSB reference are also compared to the S-MWF and the simulation results

show that no significant SSNR improvement can be achieved, since micro-

phone diversity cannot be exploited due to the closely spaced microphones. By

performing angle dependent signal source simulations, the angle dependent

SSNR shows that noise sources coming from an incident angle of the spatial

null of the dedicated directional beam pattern of the reference are suppressed

best. By varying the incident angle of the desired speech source in a cylindric-

ally isotropic noise field, the SSNR improvement is still superior compared with

the S-MWF for incident angles that are in the facial field of the person wearing

the hearing aid.

The obtained results show, that these new reference choices are able to im-

prove the signal quality further compared with the S-MWF by exploiting the

information about the TDOA. By using spatially distributed microphones, the

delay-and-sum references benefit from the signal diversity of the sound field to

reduce reverberation besides SNR improvement, while the closely spaced mi-

crophones of the hearing aid allow to form directional beam patterns to improve

the signal quality.



5 Reference for the Binaural Multichannel Wiener Filter

In the last chapter, new reference designs for the multichannel Wiener filter

were examined for closely spaced microphones of a monarual hearing aid.

This raises the question if these directivity based MWF references can be ap-

plied in the context of binaural hearing aids. Research on binaural noise re-

duction exists for some time [69, 70]. Some known techniques like the MVDR

beamformer have been expanded for this use case [71]. With the introduction

of the binaural multichannel Wiener filter (BMWF), the concept of multichan-

nel Wiener filtering was adopted for the application in binaural hearing aids

[72, 73, 74, 75, 76, 77, 78, 79, 80].

The BMWF and other binaural noise reduction approaches face the challenge

of preserving the binaural cues between the left and the right ear. These are

described by the interaural transfer functions (ITFs), which allow directional

hearing to locate signal sources in the spherical sound field of a human be-

ing. The binaural cues consist of the interaural-level-difference (ILD) and the

interaural-time difference (ITD) between the two ears [81]. The ILD is caused

by the head shadow effect, which leads to a level attenuation at higher frequen-

cies for the ear that is at the far side of a sound source. The ITD is caused

due to the time difference of arrival of the signal at the two ears. In [82], it

is shown that the ITD is important for the source localization in the lower fre-

quency range, whereas the ILD is important in the higher frequency range.

It has been shown in [74] that the binaural SDW-MWF is able to preserve the

binaural cues of a desired speech source. However, the binaural cues of the

noise field are distorted. Several efforts have been made to restore the cues

of the noise signals. In [73], a BMWF approach with partial noise estima-

tion was presented, which allows for a trade-off between noise reduction and

binaural cue preservation of the noise field. This is achieved by mixing the

microphone input signals of the left and right reference channel with the out-

put of the BMWF. In [74], the MWF cost function was extended by the ITFs

of the speech and noise components to maintain the binaural cues of both

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019
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signals. This concept was further improved by [76], where the average noise

ITFs are replaced by the instantaneous ITFs to achieve an improved binaural

cue preservation of the speech and noise terms. The work in [77, 78] ac-

counts for isotropic noise fields, which are not considered by ITFs. Therefore

an approach was presented to maintain the interaural coherence function of the

noise field. Directional interfering noise reduction for the BMWF is presented

in [83]. Therefore, the cost function of the BMWF is extended by a constraint to

cancel the interfering noise source while preserving the desired signal source.

The resulting BMWF equals a subtraction of the interfering components from

the standard BMWF implementation.

In this chapter, the directional references for the MWF, which were examined

in the previous chapter of this thesis, are applied to binaural hearing aids.

Since many efforts in research are made regarding the preservation of the

binaural cues, the influence of the direcitvity based references for the MWF on

the spatial hearing of a human being is examined. In contrast to [83], direc-

tional interference reduction is considered by applying directional references

to the BMWF. Since many of the described cue preservation techniques rely

on the selection of a reference channel, the directivity based references can

theoretically be applied to many of the existing approaches. In this work, the

influence of the reference design is investigated for the standard BMWF, which

only preserves the binaural cues of a desired speech source.

The chapter is outlined as follows. In section 5.1, the binaural multichannel

Wiener filter is described, followed by the description of the binaural cues and

the corresponding error criteria in section 5.2. In section 5.3, the generalization

of the BMWF is introduced to apply the directional references in context of bin-

aural hearing. Also the influence of the reference design on the binaural cues

is derived. In section 5.4, the directional references are applied in two simula-

tion scenarios for binaural hearing aids with two closely spaced microphones

at each ear. One simulation environment is anechoic, while the other is a rever-

berant cafeteria to examine the performance in different acoustic spaces. The

obtained results regarding the SSNR improvement and the influence of the

directivity based references on the binaural cue preservation are presented.

These are followed by a summary in section 5.5.
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5.1 The Binaural Multichannel Wiener Filter

The binaural multichannel Wiener filter is an extension of the SDW-MWF.

Therefore two filters, GMWF

L
and G

MWF

R
are applied to the microphone sig-

nals to obtain the output signals for the left and the right hearing aid. For a

single desired signal source, the BMWF is defined as

G
MWF

L = (RS + µRN )−1
RSuL (5.1)

G
MWF

R = (RS + µRN )−1
RSuR (5.2)

where uL and uR are the reference vectors for the left and right hearing aid.

Analogous to the S-MWF, the standard binaural multichannel Wiener filter (S-

BMWF) is defined by setting a one in the reference vector at the corresponding

position, while all other entries are set to zero

uL = [0, . . . , 1, . . . , 0]T (5.3)

uR = [0, . . . , 1, . . . , 0]T . (5.4)

The position of the references refL and refR for the left and the right ear are

chosen from the microphone channels as

refL ∈

[

1,
M

2

]

(5.5)

refR ∈

[

M

2
+ 1,M

]

, (5.6)

where M is an even integer. Often these are chosen pairwise by refR =

refL + M
2 . Finally, the filtered output signals for the left and the right ear are

obtained by

ZL = G
MWF

L

†
Y (5.7)

ZR = G
MWF

R

†
Y . (5.8)

The corresponding system structure of the complete signal processing algo-

rithm is depicted in Figure 5.1.

For the evaluation of the binaural cues, as will be derived in the next section,
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WF
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Figure 5.1: System structure of the binaural multichannel Wiener filter

the microphone input signals of the corresponding reference channels are re-

quired, which can be obtained by

YL = u
†
LY = u

†
LS + u

†
LN (5.9)

YR = u
†
RY = u

†
RS + u

†
RN . (5.10)

5.2 Binaural Cues

The binaural cues define the magnitude and phase relationship between the

left and right ear for a signal source in the spatial sound field. They are import-

ant for a human being to localize one or more signal sources. In the context

of hearing aids, the binaural cues are closely related to the interaural trans-

fer functions for two reference channels of the left and right hearing aid. The

following definitions and error measures are based on [75].

BM
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5.2.1 Interaural Transfer Function

The interaural transfer function (ITF) is the relative transfer function between

the left and the right reference channel of a binaural hearing aid. It is distin-

guished between the input and output ITFs of the processing algorithm. The

input ITF of the (single) speech signal is defined as

ITF in
S =

u
†
LS

u
†
RS

=
u
†
LH

u
†
RH

(5.11)

(5.12)

and the output ITF equals

ITF out
S =

ZSL

ZSR

=
G

MWF

L

†
S

GMWF

R

†
S

=
G

MWF

L

†
H

GMWF

R

†
H

, (5.13)

where ZSL and ZSR denote the speech component of the algorithm output for

the left and the right ear. The ITFs of the speech signal can also be defined by

the correlation matrices

ITF in
S =

u
†
LRSuR

u
†
RRSuR

=
u
†
LRSuL

u
†
RRSuL

(5.14)

ITF out
S =

G
MWF

L

†
RSG

MWF

R

GMWF

R

†
RSG

MWF

R

=
G

MWF

L

†
RSG

MWF

L

GMWF

R

†
RSG

MWF

L

, (5.15)

and analogous the ITFs of the noise signals ITF in
N

and ITF out
N

can be defined

by replacing the speech correlation matrix RS in (5.14) and (5.15) with the

noise correlation matrix RN .

5.2.2 Binaural Error Measures

To measure derivations and distortions of the binaural cues due to the pro-

cessing algorithm, the ITFs are separated in magnitude and phase response

in terms of the interaural level difference (ILD) and the interaural time differ-
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ence (ITD). The ILDs for the speech and noise signals are defined as (again,

cf. [75])

ILDin
S =

u
†
LRSuL

u
†
RRSuR

(5.16)

ILDin
N =

u
†
LRNuL

u
†
RRNuR

(5.17)

ILDout
S =

G
MWF

L

†
RSG

MWF

L

GMWF

R

†
RSG

MWF

R

(5.18)

ILDout
N =

G
MWF

L

†
RNG

MWF

L

GMWF

R

†
RNGMWF

R

(5.19)

and the ITD as

ITDin
S = ∠

(

u
†
LRSuR

u
†
RRSuR

)

= ∠

(

u
†
LRSuR

)

(5.20)

ITDin
N = ∠

(

u
†
LRNuR

)

(5.21)

ITDout
S = ∠

(

G
MWF

L

†
RSG

MWF

R

)

(5.22)

ITDout
N = ∠

(

G
MWF

L

†
RNG

MWF

R

)

, (5.23)

where ∠(·) denotes the phase argument. Based on the ILD and ITD, the cor-

responding error measures can be derived. The ILD error is calculated for a

block length of L samples as

∆ILDS =
1

L

L−1
∑

ν=0

10log10
(

ILDout
S (ν)

)

− 10log10
(

ILDin
S (ν)

)

(5.24)

∆ILDN =
1

L

L−1
∑

ν=0

10log10
(

ILDout
N (ν)

)

− 10log10
(

ILDin
N (ν)

)

.(5.25)

An ILD value greater than zero indicates a distortion of the ILD. In contrast to

the definition in [75], the factor 1
L

is used to average the ILD over all frequency

bins.
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The ITD error is defined as

∆ITDS =
L−1
∑

ν=0

|ITDout
S

(ν)− ITDin
S
(ν)|

π
(5.26)

∆ITDN =
L−1
∑

ν=0

|ITDout
N

(ν)− ITDin
N
(ν)|

π
. (5.27)

Note that the ITD error is divided by π to obtain a normalized error value

between zero and one.

5.3 The Generalized Binaural Multichannel Wiener Filter

In the following section, the G-MWF, as introduced in chapter 3, is extended for

the binaural case. By this generalization, it is possible to implement the refer-

ence choices as presented in chapter 4 to obtain an improved noise reduction

compared with the S-BMWF. However, the impact on the binaural cues for the

combination of the individual channels has to be investigated. Therefore the

generalized binaural multichannel Wiener filter (G-BMWF) and its influence on

the ITF preservation is derived in the following.

5.3.1 The Generalization of the Binaural Multichannel Wiener Filter

Again, the B-MWF, as defined in (5.2), is used to create the binaural output

signals. However, compared with the S-BMWF, the reference vectors uL and

uR not only consist of a single one for the dedicated reference channel but are

now extended to a combination of several channels to form the left and right

ear output signals. To maintain the binaural cues, one requirement is that only

channels of the dedicated ear can be selected, i.e., setting the elements of the

vector uiL to zero for i > M
2 and the elements of uiR to zero for i ≤ M

2 .
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Similar to the monaural case in (3.3), the overall transfer functions for the left

and right ear (H̃dL and H̃dR) can be written as

H̃dL = u
†
LH =

M
2

∑

i=1

uiL
∗ ·Hi for uiL ∈ C (5.28)

H̃dR = u
†
RH =

M
∑

i=M
2
+1

uiR
∗ ·Hi for uiR ∈ C . (5.29)

5.3.2 On the ITF Preservation of the G-BMWF

Now, the influence of the reference vectors uL and uR on the binaural cues

is derived. The interaural transfer function for a single speech source can be

written as

ITF in
S =

u
†
LH

u
†
RH

, (5.30)

which for the S-BMWF is determined by the selection of the dedicated refer-

ence channels, i.e.,

ITF in
S =

HrefL

HrefR

. (5.31)

The S-BMWF realization is able to preserve the binaural cues of the speech

signal perfectly as has been shown in [74]. The ITFs are now assumed to be

identical for each microphone pair, i.e., the ratio of the transfer functions of the

left and the right ear are assumed to be pairwise identical for closely spaced

microphones

ITF in
S =

Hl

H(l+M
2
)

for l ∈

[

1,
M

2

]

. (5.32)

The output of the G-BMWF is a combination of the individual channels for the

dedicated ear as stated in (5.28) and (5.29). Therefore, for the G-BMWF the

following statement must hold true to preserve the binaural cues of the speech

source
∑

M
2

i=1 uiLHi

∑
M
2

i=1 u(i+M
2
)RH(i+M

2
)

!
=

Hl

H(l+M
2
)

. (5.33)
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This can be written as

M
2

∑

i=1

uiLHi =

M
2

∑

i=1

Hl

H(l+M
2
)

u(i+M
2
)RH(i+M

2
) . (5.34)

Due to the assumption that the ratio of the acoustic transfer functions is pair-

wise identical, as stated in (5.32), this also holds for l = i in (5.34), which

results in
M
2

∑

i=1

uiLHi =

M
2

∑

i=1

u(i+M
2
)RHi . (5.35)

It follows that (5.33) holds if uiL = u(i+M
2
)R is fulfilled.

This derivation shows that the G-BMWF is indeed able to preserve the binaural

cues under the assumption that the ratio of the acoustic transfer functions is

pairwise identical. Due to the closely spaced microphones of a hearing aid,

this assumption seems valid, since the acoustic transfer functions may mainly

differ by a different time-of-arrival of the speech signal. It is shown that it is

possible to design the overall transfer functions H̃dL and H̃dR by combining the

individual channel for the left and right ear. However, to preserve the binaural

cues of the speech signal, the combining must be performed in parallel, i.e.,

uiL = u(i+M
2
)R.

5.4 Simulation Results

In the following, the simulation results for the G-BMWF reference choices are

presented. For the simulations, again the database of multichannel in-ear and

behind-the-ear head-related and binaural room impulse responses [68] is used.

However, now the binaural case is considered. Therefore two microphones for

each ear (named front and middle) are investigated (M = 4 in total). The

sampling rate for all simulations is 48 kHz. A FFT length of L = 512 with a

blockshift of 128 samples is used with an overlapp-add implementation with

a Hamming window. The spacing between the microphones at each hearing

aid (left and right ear) is 7.6 mm. Similar as in section 4.6.2, two simulation

environments are investigated, namely an anechoic room with a cylindrical dif-

fuse noise field and a cafeteria with babble noise. This allows to examine the
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acoustic influence on the binaural cues. The PSDs and CPSDs as well as the

TDOA are assumed to be known and the G-BMWF is applied as a batch job.

An overestimation parameter µ = 1 is used for all simulations and the desired

speech source is always coming from an incident angle of θ = 0◦.

The reference vectors for the G-BMWF, as used in the simulations, are presen-

ted in Table 5.1. This aims to make the naming more clear for the discussion

of the simulation results in the following.

Table 5.1: G-BMWF reference realization for M = 4 microphones

Name of Reference choice Realization of u

S-BMWF (left) uL = [1, 0, 0, 0]T

S-BMWF (right) uR = [0, 0, 1, 0]T

G-BMWF-DS (left) uL = [ej2πντ0 , 1, 0, 0]T

G-BMWF-DS (right) uR = [0, 0, ej2πντ0 , 1]T

P-BMWF (left) uL =
[
√

rS1,1

(rS1,1
+rS2,2

) ,
√

rS2,2

(rS1,1
+rS2,2

)

rS2,1

|rS2,1
| , 0, 0

]T

P-BMWF (right) uR =
[

0, 0,
√

rS3,3

(rS3,3
+rS4,4

) ,
√

rS4,4

(rS3,3
+rS4,4

)

rS4,3

|rS4,3
|

]T

BMWF-Dipole

reference (left)
uL = GEQ∗

[1,−1, 0, 0]T

BMWF-Dipole

reference (right)
uR = GEQ∗

[0, 0, 1,−1]T

BMWF-Cardioid

reference (left)
uL = GEQ∗

[1,−ej2πντ0 , 0, 0]T

BMWF-Cardioid

reference (right)
uR = GEQ∗

[0, 0, 1,−ej2πντ0 ]T

BMWF-Hypercardioid

reference (left)
uL = GEQ∗

[1,−ej2πν
τ0
3 , 0, 0]T

BMWF-Hypercardioid

reference (right)
uR = GEQ∗

[0, 0, 1,−ej2πν
τ0
3 ]T
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5.4.1 SSNR and LSD

In Table 5.2, the results for the segmental SNR, as calculated in (4.25), are

presented for several reference choices of the G-BMWF. Similar to the results

in chapter 4, the SSNR is calculated for frequencies between 400 Hz and 4

kHz by band-limiting the signals. For each reference choice, the SSNR values

for the outputs of the left and right hearing aid are shown. For the S-BMWF

reference selection, the front microphones of the left and right hearing aid are

chosen (Y1 and Y3). The P-BMWF uses only the phase term of Y1 and Y3

as the reference due to the magnitude combining. The results show the SSNR

values for the anechoic as well as the cafeteria environment. It should be noted

that the achieved noise reduction is higher than the results in Table 4.3, since

the number of microphones used by the MWF is doubled for the binaural case.

As can be observed, the SSNR is improved for the differential beamforming

references in comparison with the S-BMWF in both simulation scenarios. The

hypercardioid reference achieves the best SSNR values for both simulation

environments. The G-BMWF-DS, that uses a delay-and-sum reference, as well

as the P-BMWF show only a small improvement compared with the S-BMWF,

since the microphones are closely spaced.

In Table 5.3, the LSD values for the different reference choices are presented.

The results show similar behavior compared with Table 4.4. The differential

beamforming reference choices are able to slightly improve the LSD for the

anechoic environment. For the cafeteria the LSD values are similar to the

microphone input signals. Only the dipole reference shows an increased LSD

value. The results indicate that the G-BMWF improves the LSD for some cases

but shows at least similar values compared with the S-BMWF.

5.4.2 Binaural Cues

In the following, the influence of the reference choices on the binaural cues

is examined. Therefore the ITF of the speech signal for the S-BMWF refer-

ence selections as well as for several directivity based G-BMWF references

is calculated from the resulting overall transfer functions. Note that all results

are shown for a speech source coming from the front (θ = 0◦) and are not

necessary valid for other incident angles.
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ITF comparison
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Figure 5.2: ITF comparison - front and middle microphones
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Figure 5.3: ITF comparison - various references

In Figure 5.2, the ITFs of the speech signal are depicted for the anechoic envir-

onment as well as the cafeteria (incident angle of the speech source θ = 0◦).

As can be observed, the magnitude as well as the phase are nearly identical

when the front microphones (Y1 and Y3) or the middle microphones (Y2 and

Y4) are chosen as the ITF references (S-BMWF). Based on these plots, for the
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anechoic environment as well as for the cafeteria, the assumption about pair-

wise identical acoustic transfer function ratios seems valid despite some small

deviations.

Figure 5.3 shows the resulting ITFs of the speech signal for several directivitiy

based reference choices. As can be seen, the magnitude as well as the phase

are nearly identical for all reference choices in the anechoic environment. For

the cafeteria, however, small deviations of the magnitude as well as the phase

can be observed due to the acoustic influences.

ITD and ILD error

Further, the ITD and the ILD errors are calculated for several G-BMWF refer-

ence choices. In Table 5.4, the results regarding the ITD errors for the speech

as well as for the noise signal are presented for the anechoic environment. As

can be seen, the ITD error of the speech signal is close to zero for all G-BMWF

references with small error values for the differential references. This shows

that the directivity based references are able to improve the SSNR compared

with the S-BMWF, while still retaining the binaural cues. For all cases, the ITD

error of the noise signal is quite high, since this BMWF implementation distorts

the binaural cues of the noise signal as already stated in [74]. However, the

directivity based references have no significant impact on the noise ITD error.

For the cafeteria, the results regarding the ITD error are presented in Table 5.5.

While the G-BMWF-DS and the P-BMWF implementation have no influence on

the ITD error, the differental beamforming references show a slightly increased

error value for the speech ITD. By comparison with the anechoic environment,

this seems to be caused by the acoustic influences of the room. The noise ITF

error, however, is not affected by the reference choice.

In Table 5.6 and Table 5.7 the ILD error for the anechoic environment as well as

the cafeteria are shown. As can be observed, the error is slightly increased for

the directivity based references for the speech and noise ILD in both scenarios.

The dipole reference seems to have the worst performance regarding the ILD

error, since for both simulation scenarios the value is slightly increased.

The simulation result show, that the G-BMWF is able to further improve the

SSNR as well as the LSD compared with the S-BMWF by using the directivity
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based reference choices. As has been shown, the binaural cues of the speech

signal in terms of the ITF, the ITD and the ILD can be preserved for these

references in the anechoic environment. This indicates that the assumption

about the pairwise identical transfer function ratio seems valid for this case.

For the reverberant cafeteria the ITFs show slight deviations if the directivity

based references are used to design the overall transfer functions of the left

and the right hearing aid. By comparing the ITD and ILD error for the anechoic

environment with the reverberant cafeteria, the acoustic influences seem to

slightly decrease the performance. As a general conclusion, the SSNR can be

improved in comparison with the S-BMWF for the directivity based references

at the expense of a slight distortion of the binaural cues.

5.5 Summary

In this chapter, the multichannel Wiener filter was applied in the context of

binaural noise reduction for the application of hearing aids. The processing al-

gorithms face the challenge to preserve the binaural cues of the desired speech

source as well as the noise field. As stated in the introduction of this chapter,

several efforts on binaural cue preservation have been made in the literature.

The S-BMWF therefore uses a reference channel of the left and right ear to

preserve the binaural cues of the desired speech source. However, the bin-

aural cues of the noise field are distorted. By extending the S-BMWF to the G-

BMWF, the reference choice for the left and right ear allows a combining of the

individual channels to design the dedicated overall transfer function. Under the

assumption that the acoustic transfer function ratios of the microphone signals

are pairwise identical, the combined reference choices have been investigated

regarding their influence on the binaural cues. As has been derived, the bin-

aural cues can be preserved if the reference vectors are applied in parallel for

the left and the right ear. This allows to use the directivity based references of

the G-MWF in the context of binaural noise reduction.

To verify these derivations, simulations were performed for a binaural hearing

aid consisting of two closely spaced microphones for each ear. An anechoic

environment as well as a reverberant cafeteria are considered to examine the

acoustic influences on the performance. It was shown that the directivity based

references which use differential beamforming are able to improve the SSNR
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and for some cases the LSD in both simulation environments compared with

the S-BMWF.

By comparing the interaural transfer functions, it can be observed that these

are pairwise identical for the dedicated microphone channels which makes this

assumption valid for the examined simulation scenarios. Further, the speech

signal ITFs are compared to the ITFs of the G-BMWF overall transfer func-

tions that use the directivity based references. It can be shown that these are

identical for the anechoic environment. However, slight deviations for the more

reverberant cafeteria environment can be observed. The results of the ITD and

the ILD error measures show that the S-BMWF preserves the binaural cues

of the desired speech signal perfectly while distorting the binaural cues of the

noise signal as already stated in the literature. However, the errors for the

G-BMWF using the directivity based reference selections are nearly identical

compared with the S-BMWF with a small increase for the binaural cue errors

of the speech signal in the reverberant cafeteria environment.

This leads to the conclusion that the directivity based reference choices can be

applied in the context of binaural noise reduction while preserving the binaural

cues of a desired speech signal as long as these references are applied in

parallel. For more reverberant environments the assumption about pairwise

identical interaural transfer functions is slightly violated which results in a slight

distortion of the binaural cues, however, the noise reduction capabilities are

superior compared with the S-BMWF.
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Table 5.2: Segmental SNR for different G-BMWF references

µ = 1 Anechoic environment Cafeteria environment

Y1

(left - front)
5.6 dB 4.2 dB

Y2

(left - middle)
5.5 dB 4.1 dB

Y3

(right - front)
5.7 dB 4.3 dB

Y4

(right - middle)
5.8 dB 4.4 dB

S-BMWF

(left)
8.0 dB 5.8 dB

S-BMWF

(right)
8.2 dB 5.8 dB

G-BMWF-DS

(left)
8.1 dB 5.7 dB

G-BMWF-DS

(right)
8.5 dB 5.8 dB

P-BMWF

(left)
8.2 dB 5.7 dB

P-BMWF

(right)
8.4 dB 5.7 dB

BMWF-Dipole

reference

(left)

8.9 dB 7.2 dB

BMWF-Dipole

reference

(right)

9.0 dB 7.3 dB

BMWF-Cardioid

reference

(left)

9.2 dB 7.3 dB

BMWF-Cardioid

reference

(right)

9.1 dB 7.4 dB

BMWF-Hypercardioid

reference

(left)

9.4 dB 7.8 dB

BMWF-Hypercardioid

reference

(right)

9.5 dB 7.9 dB
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Table 5.3: Log spectral distance for different G-BMWF references

µ = 1 Anechoic environment Cafeteria environment

Y1

(left - front)
3.2 dB 3.8 dB

Y2

(left - middle)
2.7 dB 3.6 dB

Y3

(right - front)
3.1 dB 3.6 dB

Y4

(right - middle)
2.8 dB 3.5 dB

S-BMWF

(left)
2.7 dB 4.3 dB

S-BMWF

(right)
2.7 dB 4.1 dB

G-BMWF-DS

(left)
2.6 dB 4.2 dB

G-BMWF-DS

(right)
2.6 dB 4.0 dB

P-BMWF

(left)
2.6 dB 4.2 dB

P-BMWF

(right)
2.5 dB 4.1 dB

BMWF-Dipole

reference

(left)

1.9 dB 4.0 dB

BMWF-Dipole

reference

(right)

2.0 dB 4.8 dB

BMWF-Cardioid

reference

(left)

2.2 dB 3.9 dB

BMWF-Cardioid

reference

(right)

2.3 dB 3.9 dB

BMWF-Hypercardioid

reference

(left)

2.1 dB 3.9 dB

BMWF-Hypercardioid

reference

(right)

2.1 dB 4.3 dB
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Table 5.4: ITD error for different G-BMWF references - anechoic environment

µ = 1 ∆ITD - Speech ∆ITD - Noise

S-BMWF 0 % 45 %

G-BMWF-DS 0 % 45 %

P-BMWF 0 % 49 %

BMWF-Dipole

reference
3 % 46 %

BMWF-Cardioid

reference
2 % 47 %

BMWF-Hypcard. ref. 3 % 46 %

Table 5.5: ITD error for different G-BMWF references - cafeteria environment

µ = 1 ∆ITD - Speech ∆ITD - Noise

S-BMWF 1 % 20 %

G-BMWF-DS 1 % 20 %

P-BMWF 1 % 30 %

BMWF-Dipole

reference
9 % 19 %

BMWF-Cardioid

reference
6 % 24 %

BMWF-Hypcard. ref. 8 % 23 %

Table 5.6: ILD error for different G-BMWF references - anechoic environment

µ = 1 ∆ILD - Speech ∆ILD - Noise

S-MWF 0.1 dB 0.1 dB

G-MWF-DS 0.2 dB 0.2 dB

P-MWF 0.2 dB 0.9 dB

Dipole reference 0.6 dB 0.6 dB

Cardioid reference 0.3 dB 0.4 dB

BMWF-Hypcard. ref. 0.4 dB 0.7 dB
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Table 5.7: ILD error for different G-BMWF references - cafeteria environment

µ = 1 ∆ILD - Speech ∆ILD - Noise

S-MWF 0.2 dB 0.3 dB

G-MWF-DS 0.3 dB 0.4 dB

P-MWF 0.3 dB 1.1 dB

Dipole reference 1.3 dB 1.4 dB

Cardioid reference 0.7 dB 0.5 dB

BMWF-Hypcard. ref. 0.9 dB 1.0 dB



6 Wind Noise Reduction for a Closely Spaced Microphone

Array

In the previous chapters, directivity based references for the generalized mul-

tichannel Wiener filter have been discussed. These include the differential

beamforming references, which were successfully applied in the context of

closely spaced microphone arrangements for hearing aids. However, differen-

tial microphone arrays (and therefore the differential references for the G-MWF)

are not ideal regarding noise reduction in the presence of wind. Wind noise can

for example occur in hands-free communication applications in a car environ-

ment and are caused by open windows, fans or open convertible hoods. Also

hearing aids can suffer from wind noise if they are worn outdoors. The induced

wind creates airflow turbulence over the microphone membranes which results

in low frequency signal components of high amplitude [84].

As has been shown in the literature, the wind noise terms are decorrelated

between the microphones for distances of even a few centimeters [85, 86].

These correlation properties may lead to a significant amplification of the wind

noise for differential beamforming [25]. The required first order low pass fil-

ter for the equalization regarding the speech signal makes this behavior even

worse. The proposed G-MWF references for closely spaced microphones in

hearing aids, as introduced in the previous chapters, are therefore not suit-

able at all for wind noise reduction. One proposed solution for a differential

microphone array is to switch to a single microphone with an omnidirectional

response if wind noise is detected to avoid the wind noise amplification [25].

Commonly used noise reduction algorithms are typically based on the assump-

tion that the noise is stationary or varies only slowly in time. In [87], Wilson

et. al. demonstrated that wind noise consists of local short time disturbances

which are highly non-stationary. This makes the reduction of wind noise a chal-

lenging task due to the estimation of the short time PSDs. The suppression of

wind noise is mostly covered in the context of digital hearing aids or mobile
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devices in the literature [25, 88, 89]. For single channel wind noise reduction,

often the different power spectral density properties of speech and wind noise

are exploited [25, 88, 90]. Several other methods exist that aim to reduce wind

noise for a single microphone [91, 92, 93, 94, 95].

However, the utilization of more than one microphone allows to take the di-

versity of the sound field into account to indicate wind noise and reduce it suc-

cessfully. In [88], a spectral weighting filter based on the coherence between

two microphones is proposed. The coherence is also used in [86], where addi-

tionally to the magnitude squared coherence (MSC) the information that relies

on the phase component is applied to synthesize a spectral filter function.

In [96], the decomposition of the multichannel Wiener filter into a minimum

variance distortionless response beamformer and a single channel Wiener

post filter for an arbitrary microphone arrangement is presented. The ap-

proach is based on the assumption that the wind noise is decorrelated at the

microphones, while having equal noise power spectral densities but arbitrary

acoustic transfer functions for the speech signal. From these assumptions fol-

lows for closely spaced microphones that a simple delay-and-sum beamformer

achieves maximum SNR beamforming, because equal ATFs from the speech

source to the microphones can be assumed for low frequencies.

In this chapter, a wind noise reduction approach for a closely spaced micro-

phone array is proposed. The decomposition of the MWF in a beamformer

and a single channel post filter is used similar to [96]. It is also assumed that

the wind noise terms are decorrelated at the microphones. However, in con-

trast to [96], it is assumed that the short time noise PSDs at the microphones

may differ. If the geometry of the microphone array as well as the location of

the desired speech source is known, assumptions about the speech and noise

signal properties can be made to design a low-complexity wind noise reduction

algorithm.

The use of micro-electro-mechanical system (MEMS) microphones as a re-

placement for ordinary microphone capsules have gained interest in [97, 98,

99], especially for the application of directive beamforming [100, 101] due to

its reduced size and cost compared with an ordinary microphone capsule.

This makes them an interesting technology for multichannel speech signal pro-

cessing. Therefore the proposed wind noise reduction approach is examined

for an array of two closely spaced MEMS microphones in a car environment.
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This chapter is outlined as follows. The proposed wind noise reduction ap-

proach is derived in section 6.1 based on the decomposition of the multichan-

nel Wiener filter. Some special cases for the beamformer are discussed based

on assumptions about the wind noise signal properties. In section 6.2, the sim-

ulation results for the closely spaced microphone array in a car environment

are discussed, followed by a summary in section 6.3.

This chapter has been published in [14].

6.1 Wind Noise Reduction Algorithm

In this section, the proposed noise reduction algorithm is derived. The filtering

is only applied in the low frequency range which is affected by wind noise. It

should be noted, that the noise signal consists of wind as well as car noise

components. However, in the presence of wind noise, the wind noise com-

ponents are dominant at low frequencies. In the following, only the instation-

ary wind noise components at low frequencies are considered and the slowly

varying driving noise is neglected. Such stationary noise components can be

estimated and reduced by state-of-the-art noise reduction approaches.

As already stated, the G
MWF can be decomposed into a MVDR beamformer

G
MVDR =

R
−1
N H

H
†
R

−1
N H

(6.1)

and a single channel Wiener post filter

GWF =
γout
beam

γout
beam + µ

(6.2)

as

G
MWF = G

MVDR ·GWF · H̃∗
d . (6.3)

The term γout
beam is the narrow-band SNR at the beamformer output which is

defined as

γout
beam = tr(RSR

−1
N ), (6.4)
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where tr(·) denotes the trace operator. This decomposition is exploited for

the proposed wind noise reduction. Firstly, a beamformer for the considered

microphone setup is derived.

6.1.1 Beamformer

In the following, time aligned signals are considered, where the alignment com-

pensates the different times of arrival for the speech signal. This is achieved

by delaying the front microphone with a suitable sample delay τ to be in phase

with the rear microphone

Ŷ1(ν) = Y1(ν) ·

{

e−j2π ν
L
τ for ν ∈ 0, . . . , L

2 − 1

ej2π
ν
L
τ for ν ∈ L

2 , . . . , L− 1 ,
(6.5)

where L denotes the block length of the short time Fourier transform. The

aligned acoustic transfer function Ĥ1 is described similarly. After the time align-

ment, the ATFs in H are assumed to be identical, because the low frequency

speech components have a large wavelength compared with the microphone

distance

H = Ĥ1 = H2 (6.6)

H = H · [1, 1]T , (6.7)

which leads to the speech correlation matrix depending only on the PSD of the

speech signal at one of the microphones

RS = Φ2
X |H|2

(

1 1

1 1

)

= Φ2
S

(

1 1

1 1

)

. (6.8)

Furthermore, it can be assumed that the wind noise terms for both microphone

signals are uncorrelated even for small distances of the microphones as ex-

amined in [85, 86]. This simplifies the noise correlation matrix as well as its
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inverse since the cross-terms can be neglected

R
−1
N =





1
Φ2

N1

0

0 1
Φ2

N2



 . (6.9)

The nominator term of the G
MVDR in (6.1) can be written as

R
−1
N H = H ·





1
Φ2

N1

1
Φ2

N2



 (6.10)

and the denominator as

H
†
R

−1
N H = |H|2 ·

(

1

Φ2
N1

+
1

Φ2
N2

)

. (6.11)

Since H is not known, it is set to H = 1. This results in the minimum variance

(MV) beamformer coefficients

GMV
i =

1
Φ2

Ni

1
Φ2

N1

+ 1
Φ2

N2

, (6.12)

which can be interpreted as a noise dependent weighting of the input signals.

Note that the MV beamformer achieves the same narrow-band output SNR as

the MVDR beamformer but no distortion-free response [31]. Finally, the output

of the beamformer can be written as

YMV = (Ŷ1 ·G
MV
1 + Y2 ·G

MV
2 ). (6.13)

Using (6.8) and (6.9), it follows for the narrow-band output SNR of the beam-

former

γout
beam = Φ2

S ·

(

1

Φ2
N1

+
1

Φ2
N2

)

=
Φ2

S

Φ2
Nbeam

, (6.14)

where Φ2
Nbeam

denotes the noise PSD at the beamformer output. This PSD

can be calculated as

Φ2
Nbeam

=
Φ2

N1
· Φ2

N2

Φ2
N1

+Φ2
N2

. (6.15)
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6.1.2 Special Cases

In the following, some special cases for the beamformer as derived in (6.13)

are considered. Assuming Φ2
N1

= Φ2
N2

and uncorrelated noise terms as

in [96], GMV
i reduces to the simple weighting of a delay-and-sum beamformer

(a simple summing of the aligned signals), which is also proposed in [25] as

the optimal combining in case of wind noise for closely spaced microphones

GDS
i =

1
Φ2

N1

1
Φ2

N1

+ 1
Φ2

N1

=
1

2
, (6.16)

which results in the output signal

YDS =
1

2
(Ŷ1 + Y2). (6.17)

The condition of uncorrelated noise terms is kept and a special case is as-

sumed, where the short time noise PSDs are varying over time and frequency.

This is motivated by the highly non-stationary local short time wind noise dis-

turbances as examined in [87], which implies that only one microphone is af-

fected by wind noise for a certain time and frequency index κ and ν

Φ2
N1

(κ, ν) << Φ2
N2

(κ, ν) (6.18)

or

Φ2
N1

(κ, ν) >> Φ2
N2

(κ, ν). (6.19)

Then the noise PSD dependent weighting in (6.12) reduces to a selection ap-

proach of the dedicated frequency bins by comparing the short time PSDs of

the microphone signals Φ2
Yi

, because the speech signal PSDs Φ2
Si

are as-

sumed to be identical for both microphones. Therefore the resulting output

signal YFBS can be written as

YFBS(κ, ν) =

{

Y1(κ, ν), Φ2
Y1
(κ, ν) < Φ2

Y2
(κ, ν)

Y2(κ, ν), Φ2
Y1
(κ, ν) > Φ2

Y2
(κ, ν) .

(6.20)
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6.1.3 PSD estimation

Next, the estimates for the speech and noise PSDs, which are required for

the beamformer and post filter, are derived. As mentioned in [96], most single

channel noise estimation procedures (i.e. [55, 102, 57]) rely on the assumption

that the noise signal PSDs are varying more slowly in time than the speech sig-

nal PSD. This is not the case for wind noise and therefore makes it a challen-

ging task for a single microphone. However, the different correlation properties

for speech and wind noise using more than one microphone can be used for

the varying short-time PSD estimates.

Considering the small distance of the microphones, a reference for the wind

noise can be obtained by exploiting the fact that the wind noise components in

the two microphones are incoherent, while the speech components are highly

coherent. To block the speech signal, a delay-and-subtract approach is used

to get the term

N =
Ŷ1 − Y2

2
, (6.21)

which depends only on incoherent wind noise terms.

The wind noise PSD is defined as

Φ2
N = E {NN∗} (6.22)

= E

{(

Ŷ1 − Y2

2

)(

Ŷ1 − Y2

2

)∗}

(6.23)

=
1

4

(

E

{

Ŷ1Ŷ
∗
1

}

− E

{

Ŷ1Y
∗
2

}

− E

{

Y2Ŷ
∗
1

}

+ E {Y2Y
∗
2 }

)

(6.24)

=
1

4

(

E

{

N̂1N̂
∗
1

}

− E

{

N̂1N
∗
2

}

(6.25)

−E

{

N2N̂
∗
1

}

+ E {N2N
∗
2 }

)

.

Since the wind noise terms are assumed to be uncorrelated in the low fre-

quency range, the wind noise cross-terms vanish and the PSD is obtained by

Φ2
N =

Φ2
N1

4
+

Φ2
N2

4
. (6.26)
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(6.21) is used as an estimate for the wind noise at the output of the beamformer.

Note that this delay-and-subtract signal in combination with an additional low

pass compensation filter is also the output signal of the G-MWF for the differ-

ential beamforming references proposed in chapter 4 and chapter 5 (despite

the different look direction of the array). Obviously, this is not suitable for mi-

crophone positions that are sensitive to wind noise, because the noise terms

are heavily amplified.

By summing the aligned signals according to (6.17), the coherent signal com-

ponents are augmented. The combined signal YDS has the PSD

Φ2
YDS

= E {YDSY
∗
DS} (6.27)

= E

{(

Ŷ1 + Y2

2

)(

Ŷ1 + Y2

2

)∗}

(6.28)

=
1

4

(

E

{

Ŷ1Ŷ
∗
1

}

+ E

{

Ŷ1Y
∗
2

}

(6.29)

+E

{

Y2Ŷ
∗
1

}

+ E {Y2Y
∗
2 }

)

= E {SS∗}+
1

4

(

E

{

N̂1N̂
∗
1

}

+ E

{

N̂1N
∗
2

}

+ E

{

N2N̂
∗
1

}

+E {N2N
∗
2 }

)

. (6.30)

Again the wind noise cross-terms are assumed to vanish due to the uncorrel-

ated wind noise behaviour and from (6.30) the PSD is obtained

Φ2
YDS

= Φ2
S +

Φ2
N1

4
+

Φ2
N2

4
. (6.31)

Combining (6.26) and (6.31), the PSD of the clean speech signal is acquired

by

Φ2
S = Φ2

YDS
− Φ2

N (6.32)

and the noise PSD at the ith microphone

Φ2
Ni

= Φ2
Yi

− Φ2
S . (6.33)

It should be noted that this derivation only holds for uncorrelated noise terms.

Φ2
S may still contain correlated noise. However, the correlated driving noise is
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neglected as stated at the beginning of this section. In contrast to Zelinskis

post-filter [103], which also assumes zero correlation between the microphone

signals, the short time noise PSDs are assumed to be different (Φ2
N1

6= Φ2
N2

).

6.1.4 Post Filter

As described in (6.3), the beamformer is followed by a single channel Wiener

post filter to achieve additional noise suppression. The SNR estimate

γin =
Φ2

S

Φ2
N

(6.34)

is used with the noise PSD according to (6.26) instead of (6.14), because it

shows a better performance in the simulations regarding SNR improvement

and speech distortion. Hence, the post filter

GWF =
γin

γin + µ
(6.35)

is used.

Finally, the output of the complete wind noise reduction algorithm is

Z = (Ŷ1 ·G
MV
1 + Y2 ·G

MV
2 ) ·GWF (6.36)

= YMV ·GWF . (6.37)

This wind noise reduction algorithm is only applied for frequencies below a

cutoff frequency fc, because wind noise mostly contains low frequency com-

ponents and the assumptions about the signal properties are only valid for low

frequencies. Figure 6.1 shows the block diagram of the signal processing

structure.

6.2 Simulation Results

In the following, the results of the simulations for the algorithm proposed in sec-

tion 6.1 are presented. Therefore wind noise in a car was recorded with a linear
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Figure 6.1: Block diagram of the signal model and the proposed processing [14]

MEMS microphone array in endfire configuration. To investigate varying micro-

phone distances, an array of four sensors with equal spacing is considered.

The distances are 7.1 mm, 14.3 mm and 21.4 mm. The driving speed was

100 km/h and both front windows at the driver side as well as the co-driver

side were completely open to allow a turbulence airflow over the MEMS array.

The speech signals for testing are ITU speech signals convolved with the im-

pulse responses, which were measured from the mouth reference point of an

artificial head (HMS II.5 from HEAD acoustics) at the drivers position to the

MEMS array microphones. The array is mounted above the sun visor at the

driver seat position. For the simulations a sampling rate fs = 16 kHz and

a FFT size of 512 samples is used. The FFT shift is 128 samples and each

block is windowed with a Hamming window before it is transformed into the fre-

quency domain. The noise recordings and the speech recordings were done

separately and mixed in the simulation. The overestimation parameter for the

Wiener post filter is set to µ = 6 and the cutoff frequency fc is set to 1 kHz.

As quality measures, the segmental signal-to-noise ratio as well as the log

spectral distance are considered. It should be noted that all SSNR and LSD

measures are calculated for the frequency region below the cutoff frequency

fc since the frequency region above fc is not affected by the proposed wind

noise reduction approach. Car noise, which is also present in the microphone

signals, is not considered in the algorithm. Therefore the SSNR improvements

in absolute value can be lower compared with measured noise signals which

contain wind noise only.
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Figure 6.2: Magnitude squared coherence for noise signals (top) as well as speech

signals (bottom) with different microphone distances [14]

6.2.1 Coherence Properties

Figure 6.2 shows the results of the MSC calculation of speech and noise for

varying microphone distances. As can be observed, the assumption that noise

is decorrelated while speech is highly correlated is fulfilled for frequencies be-

low 600 Hz for all microphone distances. Therefore the assumptions that are

made for the design of the beamformer as well as for the calculation of the

speech and noise estimates are valid for the low frequency range.

6.2.2 Beamformer Output

In Table 6.1 the SSNR gain of the beamformer output is compared with a single

microphone. This comparison is considered, because the approach in [25] sug-

gests to switch from a differential microphone array to a single omnidirectional

microphone if wind noise is detected. The SSNR of the single microphone is

2.1 dB. For further comparison, the results of the delay-and-sum beamformer

YDS are shown, which is the summing of the aligned signals, as described

in (6.17) (and also proposed in [25] for combining of wind noise affected sig-

nals). Also the output of a frequency bin selection (YFBS) approach, as stated
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in (6.20), is examined. The noise estimates, as derived in section 6.1, are

used for the beamformer. Moreover, the ideal noise PSDs are used to get a

benchmark. The short time recursive PSD smoothing was set to zero, since

this achieved the best results due to the high non-stationarity of the wind noise.

Table 6.1: SSNR gain compared with single microphone for different beamformer

outputs

Signal Microphone Distance

7.1 mm 14.3 mm 21.4 mm

YDS 1.0 dB 1.2 dB 1.6 dB

YFBS 1.8 dB 2.3 dB 2.5 dB

YMV (noise

estimate)
1.8 dB 2.3 dB 2.8 dB

YMV (noise

benchmark)
1.8 dB 2.5 dB 3.0 dB

As can be observed, all beamformer approaches are able to improve the SSNR

in the considered frequency region compared with a single microphone, where

all SNR gains are getting larger as the distance between the microphones is

increased. It is interesting to see that the delay-and-sum approach YDS has

the worst performance for this scenario for all microphone distances. Note

that YDS is the beamformer of the approach in [96] for this closely spaced

microphone arrangement. The frequency bin selection approach shows quite

similar results compared with the MV-beamformer that uses the noise estim-

ates, which indicates that the short time PSDs at the microphones vary heavily.

Comparing the performance using the estimated noise PSDs with that of the

beamformer that uses the the actual noise PSDs, it is observed that the res-

ults regarding the SSNR are similar, i.e., the PSD estimates are sufficiently

accurate.

6.2.3 Post Filter Output

Now the SSNR as well as the LSD for the complete MWF including the post

filter are examined. To compare the post filter against other approaches, a wind

noise reduction filter by Franz et. al. [88] that defines a filter function based on
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the magnitude squared coherence is used as a reference. The proposed post

filter as well as the post filter derived in [88] are applied to the beamformer

output YMV , which uses the noise estimates. As can be seen in Table 6.2, the

SSNR can be further improved, while keeping the speech distortion below 1

dB compared with the single microphone signal Y1.

Table 6.2: SSNR and LSD comparison for the post filter output

Signal SSNR gain LSD

Y1 - 2.3 dB

YMV 2.8 dB 2.2 dB

Z 5.4 dB 3.3 dB

YMV + post

filter after [88]
5.4 dB 3.3 dB

For the post filter comparison, the noise overestimation parameter was set to

µ = 6 and the short time PSDs used for the post filter, as well as the calculated

MSC needed for the filter design in [88], were recursively smoothed by the

same factor of 0.85 to make a fair comparison. As can be seen, both post

filters are able to achieve the same amount of noise reduction with the LSD

being in the same range for both approaches.

Figure 6.3 shows the spectrogram for the omnidirectional reference micro-

phone as well as the output Z of the proposed wind noise reduction algorithm

with a microphone distance of 21.4 mm. It can be observed that the high ener-

getic noise terms in the low frequencies are successfully suppressed. Above

600 Hz the noise reduction is not as strong, i.e., the assumptions for the wind

noise signal properties with this noise recording are only valid for frequencies

below 600 Hz (cf. Fig. 6.2).

6.2.4 Wind Noise Only Scenario

Finally, the wind noise reduction is considered in a scenario containing only

wind noise and no driving noise. Again, the beamformer output YMV with

noise estimation is used with both post filter approaches as in section 6.2.3.

All parameters except for the overestimation parameter are the same. The
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Figure 6.3: Spectrogram for the clean speech signal, the single microphone and the

post filter output signal [14]

overestimation parameter for the Wiener post filter is µ = 8. The SSNR of

the single microphone Y1 is 4.9 dB in this scenario. The results can be seen

in Table 6.3.

A significant SSNR gain is achieved by the beamformer and the post filter out-

puts compared with the reference microphone. Comparing the results with the

gains in Table 6.2, the achieved SSNR values are higher due to the absence of

the driving noise. The deterioration of the speech distortion was kept below 1

dB compared with the single microphone signal Y1 (LSD of 2.3 dB). This allows

a fair comparison for both scenarios regarding the noise reduction of the post
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Table 6.3: SSNR and LSD comparison for the algorithm output in a scenario contain-

ing only wind noise

Signal SSNR gain LSD

Y1 - 2.3 dB

YMV 3.4 dB 2.3 dB

Z 9.3 dB 3.3 dB

YMV + post

filter after [88]
9.2 dB 3.1 dB

filter. As can be observed, Z achieves a slightly higher SSNR gain than the

combination of the MV beamformer and the post filter according to [88], but

has a slightly higher LSD value.
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Figure 6.4: Spectrogram for a single microphone (top) and the post filter output signal

(bottom) in a wind noise only scenario [14]

Figure 6.4 shows the spectrogram of the output Z for the wind noise only scen-

ario. The noise is significantly reduced over a wide frequency range. Since the
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coherent driving noise terms are not present in this scenario, noise reduction

can also be observed for frequencies above 600 Hz.

6.3 Summary

In this chapter, a wind noise reduction approach for a closely spaced micro-

phone arrangement was proposed. Since differential beamforming is sensitive

to wind noise, an alternative solution for noise reduction with closely spaced

microphones was derived for situations where wind noise occurs. Although

switching to one microphone in case of wind noise is mentioned in the literature

as a possible solution, a multiple microphone setup is able to take advantage

of the sound field diversity for even small microphone distances.

Exploiting the decomposition of the multichannel Wiener filter, the processing

algorithm was implemented by a beamformer followed by a single channel

Wiener post filter. The beamformer was derived based on the MVDR beam-

former. For the derivation, the assumption about different signal properties of

the speech and noise signals in the low frequencies for a closely spaced mi-

crophone array was used in combination with a known TDOA of the desired

speech source. The speech signals were assumed to be identical for both

microphones after the time alignment due to the large wave length in the low

frequency range, whereas the short time wind noise PSDs were assumed to be

decorrelated and unequal for each microphone. These assumptions led to the

MV beamformer, which is basically a time and frequency dependent weighting

of the microphone input signals.

The estimation of the speech and noise PSDs is commonly based on the as-

sumption that the noise is stationary or varies only slowly, which is not the case

for wind noise. Therefore, for the Wiener post filter as well as for the beam-

former, the required speech and short time noise PSD estimates were derived

based on a blocking of the speech source and a delay-and-sum beamformer.

Both were used to obtain the final speech and noise PSD estimates.

To verify the proposed wind noise reduction algorithm and the assumptions

about the signal properties, simulations were carried out using wind noise re-

cordings of a closely spaced MEMS microphone arrangement in a car envir-

onment. It was shown that even for distances smaller than one centimeter the
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wind noise is decorrelated for frequencies below 600 Hz, while the speech sig-

nals are highly correlated. Regarding the SSNR, the output of the proposed

MV beamformer is compared to the delay-and-sum beamformer and a selec-

tion approach that chooses a microphone channel for each frequency bin. As

could be observed, all approaches were able to improve the SSNR compared

with a single microphone, however, the delay-and-sum beamformer achieves

the worst performance. This leads to the conclusion that the assumption about

unequal and decorrelated short time noise PSDs holds. The SSNR gain com-

parison of the estimated PSDs with the ideal PSDs shows that the estimates

are sufficiently good. The single channel Wiener post filter is able to improve

the SSNR further and achieves similar results compared with state-of-the-art

wind noise filters known in the literature.

Wind noise induced disruptions are a commonly known problem with differ-

ential beamforming. The differential beamforming references for the G-MWF,

as proposed for noise reduction in hearing aids in the previous chapters, are

therefore not suitable at all to remove wind noise artifacts. However, due to

the closely spaced microphones, the proposed wind noise reduction approach

may also be predestined for the application in hearing aids.



7 Background Noise Simulation based on MIMO

Equalization

In the previous chapters, speech enhancement algorithms were developed that

take the spatial information of the sound field into account by using more than

one microphone signal. This raises the question how these algorithms can be

tested regarding their enhancement capabilities. Additionally, often a compar-

ison with state-of-the-art multiple microphone processing approaches that are

already known in the literature is desired (i.e. [104, 105, 106]). For the simula-

tions in previous chapters, the speech and noise signals were therefore recor-

ded separately and mixed together afterwards. However, this simulations rely

on the assumption that the microphones are perfectly linear and the speech

and noise signals can be combined in terms of superposition.

For the evaluation of enhancement algorithms in noisy environments also back-

ground noise simulations are often used. In order to verify these algorithms in

a real acoustic environment, the proper signal conditions between the recorded

noise signals must be preserved. In the ETSI EG 202 396-1 standard [107], the

background noise conditions are reproduced by several loudspeakers and one

or two microphones. The acoustic transfer functions from the loudspeakers to

the microphones are equalized in third octave bands and the time-difference-

of-arrivals are compensated. However, for enhancement algorithms using mul-

tiple microphones this is not sufficient, since they take the spatial information

of the noise field into account, which is not considered in this equalization ap-

proach.

In order to achieve a more accurate reproduction of the noise signals, the

equalization must be capable to decorrelate the acoustic propagation paths

of the simulation environment. This is considered in the ETSI TS 103 224

standard [108], where eight loudspeakers and microphones are used to recre-

ate a sound field around a dummy head or a hand-held communication device.

In the standard, the inverse of the acoustic transfer function matrix is used for
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S. Grimm, Directivity Based Multichannel Audio Signal Processing For Microphones 
in Noisy Acoustic Environments, Schriftenreihe der Institute für Systemdynamik (IDS) 
und optische Systeme (ISO), https://doi.org/10.1007/978-3-658-25152-9_7

http://crossmark.crossref.org/dialog/?doi=/10.1007/978-3-658-25155-0_7&domain=pd


100 7 Background Noise Simulation based on MIMO Equalization

the equalization of the acoustic multiple input - multiple output (MIMO) system.

While this approach shows good results compared with ETSI EG 202 396-1

and other approaches [109], several problems can occur if the inverse acoustic

matrix is ill-conditioned. Therefore, a regularization factor is introduced, which

can be optimized in different manners [110, 111].

In the following, an approach using more loudspeakers than microphones com-

pared with [108] is proposed. Since it is possible to have access to the mi-

crophone signals for all noise reduction techniques derived in the previous

chapters, the proposed approach aims to equalize the MIMO system at the

actual microphones. In contrast, the ETSI TS 103 224 standard uses meas-

urement microphones around the actual hand-held device or dummy head for

the equalization.

By using a greater number of loudspeakers than microphones, multiple solu-

tions for the inverse equalization matrix exist. One possible solution, the Moore-

Penrose pseudo-inverse of the ATF matrix, can be calculated and used as a

mixing matrix for the noise input signals. In the following, the impact of this

pseudo-inverse on the equalization procedure is examined.

This chapter is outlined as follows. In section 7.1, the signal model and the

notation of the MIMO acoustic environment is described as an expansion of the

signal model in chapter 2.1. Further, the equalization approach that uses the

pseudo-inverse of the acoustic transfer function matrix is derived in section 7.2,

followed by the measurement results and the simulations which are presented

in section 7.3.

This chapter has been published in [15].

7.1 The Signal Model

In this section, the acoustic MIMO model and its notation is presented. It is

based on the signal model in chapter 2.1. However, the model needs to be

expanded from the single input - multiple output (SIMO) system to the MIMO

case, since more than one signal source (the number of required playback

loudspeakers) is used. The MIMO system is considered as linear and time-

invariant. It consists of N loudspeakers and M microphones (N ≥ M ). It is
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also assumed that the signal-to-noise ratio is sufficiently high, so noise influ-

ences can be neglected in the following. As a result, the signal yi(k) at the i-th

microphone can be written as

yi(k) =

N
∑

n=1

hn,i(k) ∗ xn(k) , (7.1)

where xn(k) refers to the discrete input signal that is fed to the n-th loud-

speaker and hn,i describes the acoustic impulse response from the n-th loud-

speaker to the i-th microphone.

The acoustic transfer functions derived from the corresponding impulse re-

sponses as well as the MIMO input and output signals can be written in the

frequency domain as the acoustic transfer function matrix

H(ν) =















H11(ν) H12(ν) · · · H1M (ν)

H21(ν) H22(ν) · · · H2M (ν)
...

...
. . .

...

HN1(ν) HN2(ν) · · · HNM (ν)















(7.2)

and furthermore the vectors

X(η, ν) = [X1(η, ν), X2(η, ν), · · · , XN (η, ν)] (7.3)

Y(η, ν) = [Y1(η, ν), Y2(η, ν), · · · , YM (η, ν)] , (7.4)

where X(η, ν) is the loudspeaker input signal vector and Y(η, ν) is the micro-

phone signal vector. In the following, the indices η and ν are omitted if possible.

As a result, the MIMO system equation, as given in (7.1), can be written in a

compact form in the frequency domain

Y = XH . (7.5)
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7.2 Equalization of the MIMO System

In the following, the equalization of the MIMO acoustic environment is derived.

Therefore, a new signal vector S(η, ν) is introduced, which contains the in-

put signals (the recorded noise or speech reference signals) that need to be

accurately reproduced at the microphones

S(η, ν) = [S1(η, ν), S2(η, ν), · · · , SM (η, ν)] . (7.6)

Furthermore, an equalization matrix W(ν) is introduced that acts as a pre-

equalization filter for the input signals before they are sent to the loudspeakers

W(ν) =















W11(ν) W12(ν) · · · W1N (ν)

W21(ν) W22(ν) · · · W2N (ν)
...

...
. . .

...

WM1(ν) WM2(ν) · · · WMN (ν)















. (7.7)

The whole system, from the input signals in vector S(ν) to the microphone sig-

nals in vector Y(ν), can be represented as a block diagram as shown in Figure

7.1.

Figure 7.1: MIMO system - block diagram [15]
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The relation between S(ν) and Y(ν) can be written as

Y = SWH . (7.8)

In order to equalize the acoustic system, it must be assured that the following

statement holds

Y
!
= S . (7.9)

This can be achieved by choosing W to fulfill

WH = I . (7.10)

I denotes the unity matrix. If the number of loudspeakers is equal to the num-

ber of microphones (N = M ), this obviously results in

W = H
−1 , (7.11)

if H has full rank and is well conditioned. In the ETSI TS 103 224 standard this

is implemented as

W = (H†
H + ϑI)−1

H
† , (7.12)

where † is the conjugate transpose and ϑ is a regularization factor to avoid

problems due to an ill-conditioned matrix H.

A matrix is ill-conditioned if it has a very high condition number κ, which is

defined as the ratio between the maximal and minimal singular values σmax

and σmin, respectively

κ(ν) =
σmax(ν)

σmin(ν)
. (7.13)

The condition number also relates the matrix norms of the matrices H and W,

i.e.,

κ(ν) = ||H|| · ||W||. (7.14)

From (7.14) it can be observed that an ill-conditioned matrix H results in a mat-

rix W with a large matrix norm. For large condition numbers, the regularization

factor ϑ in (7.12) limits the norm of W. However, the regularization prevents

perfect equalization of the MIMO system.

For the proposed equalization approach, more loudspeakers than microphones
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are used (N > M ). This reduces the probability of ill-conditioned matrices, as

will be shown in the simulations in the following section. Hence, a smaller reg-

ularization factor ϑ can be chosen or the regularization is completely avoided.

With N > M the matrices are not square and no unique inverse exists. By us-

ing the Moore-Penrose pseudo-inverse [112], an inverse of the acoustic system

MIMO matrix H can be calculated, analogous to (7.12). This pseudo-inverse

minimizes the matrix norm of the equalization matrix W. The minimized norm

also results in reduced power of the signals that are played back by the loud-

speakers, which follows from the sub-multiplicative property

||X|| ≤ ||S|| · ||W||. (7.15)

7.3 Simulation and Measurement Results

In order to verify the proposed equalization approach to achieve proper repro-

duction of noise signals at the microphones, measurements in a car environ-

ment were taken. Therefore it is evaluated if the signal power as well as the

spatial properties of the playback signals can be accurately reproduced at the

microphones. Regarding the signal power evaluation, the PSDs at the micro-

phones are compared with the PSDs of the input reference signals. To verify

the accurate reproduction of the spatial properties, the magnitude squared co-

herence was chosen as a quality measure.

The simulation scenario consisting of four loudspeakers and two microphones

is shown in Figure 7.2. The input signals are two noise signals that are recor-

ded in a car at a driving speed of 100 km/h, which are aimed to be reproduced

accurately at the microphones. For the equalization approach, the acous-

tic transfer functions in the simulation environment from each loudspeaker to

each microphone were measured using a logarithmic sine sweep. Based on

that measurement, the mixing matrix W was calculated by the Moore-Penrose

pseudo-inverse. Since the elements in W contain non causal filters, they were

transformed to the time domain and delayed to obtain a causal filter. Then

the input signals were pre-equalized with the corresponding filters of the mix-

ing matrix in the time domain. The filter length for the MIMO equalization was

chosen to 8192 samples and a sampling frequency of fs = 16 kHz was used.

The pre-equalized signals were sent to the loudspeakers and the results were
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recorded with the two microphones. For comparison, further measurements

were also taken with the signals pre-equalized as suggested in the ETSI EG

202 396-1 standard.

Figure 7.2: Loudspeaker-microphone arrangement in the car environment [15]

To verify if the correct power spectral densities of the input signals are repro-

duced at the microphones, the PSDs were analyzed in third octave bands for

the proposed equalization approach as well as for the ETSI EG 202 396-1

standard and compared with the PSDs of the original input noise signals. The

results are shown in Figure 7.3. The reference (A) shows the PSD for the input

signal, which is aimed to be reproduced at microphone 1. The PSDs for the

equalization after ETSI EG 202 396-1 (B) as well as for the proposed MIMO

equalization approach (C) are shown. As can be seen, both equalization ap-

proaches match quite well in terms of the PSD compared with the reference

signal.
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Figure 7.3: Power spectral density comparison - A: input signal (reference); B: ETSI
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In Figure 7.4, a comparison for the correct reproduction of the magnitude

squared coherence between the two input signals is depicted. The MSC for

the input signals is denoted as the reference (D). In comparison, the MSC for

the proposed MIMO equalization approach is shown (F). As can be observed,

the MSC is reproduced quite well over the whole spectrum. In low frequencies,

the performance decreases due to the not sufficient filter length of the equal-

ization filters, but the overall performance can be considered to be good. The

ETSI EG 202 396-1 standard (E) does not consider spatial reproduction at all,

so the MSC is close to one for the observed frequencies.

To verify if the estimated acoustic transfer function matrices are well condi-

tioned, the condition number over all frequencies for the matrices are plotted in

Figure 7.5. The acoustic transfer function matrices are derived using two mi-

crophones and a varying number of loudspeakers (M = 2 and N ∈ {2, 3, 4}).

The frequency dependent condition numbers for two (2× 2), three (3× 2) and

all four loudspeakers (4×2) are shown. As can be observed, the frequency de-

pendent condition number values are the highest for the two-loudspeaker-case

and decrease as more loudspeakers are added. Hence, the measurements

show that the inverse / pseudo-inverse pre-equalization matrix is better condi-

tioned if more loudspeakers than microphones are used.

7.4 Summary

In this chapter, a background noise simulation approach was proposed to verify

speech enhancement algorithms that use more than one microphone and take

the spatial properties of the sound field into account. Therefore, a multiple-

input multiple-output arrangement using more loudspeakers than microphones

is considered as a simulation environment. In order to reproduce the input

signals at the microphones correctly, the MIMO environment was equalized by

the inverse acoustic transfer function matrix to decorrelate the acoustic signal

paths. Since more loudspeakers than microphones are utilized, no unique in-

verse exists and the Moore-Penrose pseudo-inverse was applied since it min-

imizes the norm of the matrix. This also reduces the power required for the

signal playback.
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Measurements were taken in a car environment with up to four loudspeak-

ers and two microphones to verify the proposed equalization approach. The

PSDs of the reference noise input signals are compared with the PSDs of the

microphone signals to show that the signal powers are correctly reproduced.

In order to verify the accurate reproduction of the spatial properties between

the microphones, the magnitude squared coherence function of the reference

noise signals was compared with that of the microphone signals.

The measurements show that the reference noise PSDs are retained well at

the microphones for the proposed equalization as well as for the ETSI EG 202

396-1 standard. For the MSC evaluation, the proposed background noise simu-

lation approach results in similar MSC values compared with the input signals.

However, slight deviations occur in the low frequencies due to the not long

enough equalization filters. In comparison, the equalization using the ETSI EG

202 396-1 standard failed to reproduce the MSC completely. By varying the

number of loudspeakers and therefore the dimension of the acoustic transfer

function matrix, the influence on the condition number was examined. It was

shown, that using more loudspeakers than microphones reduces the probab-
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ility of an ill-conditioned matrix since the condition number decreases for the

examined environment as more loudspeakers are added.

As a conclusion follows that the input signal properties can be reproduced suf-

ficiently accurate at the microphones by the proposed background noise sim-

ulation approach. Using more loudspeakers than microphones also increases

the probability of a well conditioned equalization matrix.



8 Conclusions

In this thesis, multichannel speech signal processing algorithms have been

investigated. They all augment a desired speech signal, while reducing un-

wanted disruptions which are caused by background noise or reverberation.

The usage of more than one microphone allows to take the spatial sound field

into account to achieve a spatial filtering of the signals.

With the generalization of the multichannel Wiener filter, it was shown that the

overall transfer function can be designed by a combining of the individual micro-

phone channels. In contrast to previous research on the G-MWF, knowledge

about the microphone arrangement as well as the location of a speaker are

considered in this work. This allows to combine the narrow-band algorithms

with broad-band beamforming approaches. As a result, a class of directivity

based references for the generalized MWF has been derived in this thesis. It

has been shown in simulations that these new references achieve an improve-

ment regarding the broad-band SNR compared with the standard MWF for vari-

ous application environments. For closely spaced microphones the differential

beamforming references are able to improve the SNR by forming a directional

response as the overall transfer function. For distributed microphones the pro-

posed delay-and-sum based references are able to exploit the diversity of the

sound field. Besides improved noise reduction compared with the standard

MWF, these delay-and-sum based references reduce reverberation due to the

coherent combining of the direct signal paths. In comparison with the approach

that is based on a partial equalization of the magnitude of the acoustic trans-

fer function [7], the proposed delay-and-sum based references show a similar

performance regarding the noise reduction but with additional dereverberation

capabilities.

However, the question remains which reference choice is appropriate for which

microphone arrangement. In this work, equally spaced acoustic sensors have

been investigated. Future research may address this by designing references
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S. Grimm, Directivity Based Multichannel Audio Signal Processing For Microphones 
in Noisy Acoustic Environments, Schriftenreihe der Institute für Systemdynamik (IDS) 
und optische Systeme (ISO), https://doi.org/10.1007/978-3-658-25152-9



112 8 Conclusions

that consider signal combining for non-uniformly spaced arrays. This can po-

tentially further improve the noise reduction and dereverberation.

Since the differential beamforming references are also applied in the context

of hearing aids in the simulations, the preservation of the binaural cues is an

important topic. The binaural multichannel Wiener filter is able to preserve the

binaural cues of a desired speech signal perfectly. In this work, it has been

examined if the reference designs that use a combining of the channels are

still able to preserve the binaural cues of the desired speech source. Therefore

the binaural MWF is generalized similar to the SDW-MWF. It was shown in

simulations that the binaural cues can be preserved under the assumption that

the acoustic transfer function ratios between the microphones of the left and

the right hearing aid are pairwise identical. The standard binaural MWF can

preserve the binaural cues of a desired signal source perfectly but distorts the

binaural cues of the noise field. Existing noise cue preservation techniques

can potentially be combined with the proposed directivtiy based references

for the binaural Wiener filter in future research. This may achieve a superior

noise reduction compared with the standard binaural MWF, while preserving

the binaural cues of the noise field.

Differential beamforming and therefore also the differential beamforming refer-

ences are sensitive to wind noise disruptions. This is caused by the correlation

properties of the noise signals between adjacent microphones which are decor-

related for even small microphone distances. As a result, the wind noise terms

are heavily amplified for differential beamforming processing approaches. In

this thesis, a wind noise reduction algorithm for closely spaced microphones

was derived, based on the decomposition of the MWF into a beamformer and

a single channel post filter. Ordinary noise estimation procedures rely on the

assumption that the noise is stationary or only varies slowly in time. This is not

the case for wind noise which is highly non-stationary. Therefore an estima-

tion approach was derived, which is based on the different signal properties of

speech (highly correlated) and wind noise (decorrelated) between the micro-

phones. The obtained estimates of the speech and noise PSDs are required for

the beamformer as well as the single channel post filter. For the derivation of

the beamformer, it was further assumed that the short time noise PSDs are un-

equal between the microphones for each frequency bin. Simulations with wind

noise recordings of closely spaced MEMS microphones in a car show good
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results regarding the wind noise reduction. The proposed wind noise reduc-

tion algorithm for closely spaced microphones shows a superior performance

compared with a recently introduced algorithm that assumes the noise PSDs

to be identical at the microphones. The stationary driving noise, however, is

not reduced by this approach since it is highly correlated for small microphone

distances. Future research may address this by using the closely spaced mi-

crophones as a part of an array of more widely spaced microphones, where the

spatial diversity of the sound field can be exploited for further noise reduction.

Since the non-stationary noise terms are mostly reduced with the proposed

approach, state-of-the-art noise estimation procedures can be chosen that rely

on the assumption that the driving noise is only slowly varying.

8 Conclusions
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